We investigated the effects of formulations based on phosphite products on gas exchange and activity of antioxidant enzymes in coffee plants. Seedlings of the Mundo Novo cultivar were submitted to various treatments c...We investigated the effects of formulations based on phosphite products on gas exchange and activity of antioxidant enzymes in coffee plants. Seedlings of the Mundo Novo cultivar were submitted to various treatments composed of different formulations of with potassium phosphite (ADB 120), manganese phosphite (Reforce Mn), and fungicide (PrioriXtra®). For coffee seedlings, the combination of potassium phosphite and citrus by-products, isolated or in a combination with other products elicited the antioxidant system. Besides the high activity of antioxidant enzymes, the photosynthetic rates were higher than other treatments. The better performance of coffee seedlings treated with those formulations occurred even in absence of pathogens.展开更多
Tannase is a hydrolytic enzyme that is involved in the biodegradation of tannins and it has biotechnological potential in the pharmaceutical, chemical, food and beverage industries. Microorganisms, especially filament...Tannase is a hydrolytic enzyme that is involved in the biodegradation of tannins and it has biotechnological potential in the pharmaceutical, chemical, food and beverage industries. Microorganisms, especially filamentous fungi, are important tannase producers. The aims of this work were to find a potential tannase producer and to improve the cultivation conditions. Three Aspergillus species (A. japonicus 246A, A. tamarii 3 and Aspergillus sp. GM4) were investigated in different culture media (Adams, Czapeck, Khanna, M5 and Vogel) and inducers (1% and 2% tannic acid;1% green tea;1% methyl gallate;1% gallic acid). Aspergillus sp. GM4 and Adams medium were selected. The tannase production by Aspergillus sp. GM4 in Adams medium was induced in the presence of 2% (w/v) tannic acid and gallic acid as carbon sources, while green tea was not able to induce tannase production. The Plackett-Burman screening design was performed with the variables MgSO4, KH2PO4, yeast extract, tannic acid, agitation rate and salt solution. The variables MgSO4 and agitation rate were selected for the optimization of tannase production using a Central Composite Rotatable Design. Under optimized conditions, a 2.66-fold increase in the enzyme production was observed with small modifications in the medium composition.展开更多
文摘We investigated the effects of formulations based on phosphite products on gas exchange and activity of antioxidant enzymes in coffee plants. Seedlings of the Mundo Novo cultivar were submitted to various treatments composed of different formulations of with potassium phosphite (ADB 120), manganese phosphite (Reforce Mn), and fungicide (PrioriXtra®). For coffee seedlings, the combination of potassium phosphite and citrus by-products, isolated or in a combination with other products elicited the antioxidant system. Besides the high activity of antioxidant enzymes, the photosynthetic rates were higher than other treatments. The better performance of coffee seedlings treated with those formulations occurred even in absence of pathogens.
文摘Tannase is a hydrolytic enzyme that is involved in the biodegradation of tannins and it has biotechnological potential in the pharmaceutical, chemical, food and beverage industries. Microorganisms, especially filamentous fungi, are important tannase producers. The aims of this work were to find a potential tannase producer and to improve the cultivation conditions. Three Aspergillus species (A. japonicus 246A, A. tamarii 3 and Aspergillus sp. GM4) were investigated in different culture media (Adams, Czapeck, Khanna, M5 and Vogel) and inducers (1% and 2% tannic acid;1% green tea;1% methyl gallate;1% gallic acid). Aspergillus sp. GM4 and Adams medium were selected. The tannase production by Aspergillus sp. GM4 in Adams medium was induced in the presence of 2% (w/v) tannic acid and gallic acid as carbon sources, while green tea was not able to induce tannase production. The Plackett-Burman screening design was performed with the variables MgSO4, KH2PO4, yeast extract, tannic acid, agitation rate and salt solution. The variables MgSO4 and agitation rate were selected for the optimization of tannase production using a Central Composite Rotatable Design. Under optimized conditions, a 2.66-fold increase in the enzyme production was observed with small modifications in the medium composition.