Flocculation studies between dual polymers on pulp and paper mill wastewater are reported in this paper. The effects of different molecular weights of polyDADMAC and different dosages of Polyacrylamide (PAM) were stud...Flocculation studies between dual polymers on pulp and paper mill wastewater are reported in this paper. The effects of different molecular weights of polyDADMAC and different dosages of Polyacrylamide (PAM) were studied. The molecular weights of polyDADMAC used were 8.8×104, 10.5×104 and 15.7×104 g/mol. The flocculation performance was analyzed in jar tests with PolyDADMAC and Polyacrylamide dosages ranging from 0.4-2.0 mg/L﹣1 and 0.4-8.0 mg/L﹣1 respectively. A higher molecular weight and a 6.0 mg/L﹣1 dosagepolyDADMAC gave the highest level of flocculation based on turbidity and TSS removal. In addition, increasing the molecular weight of PolyDADMAC increased ζ potential values approaching zero. This indicated that polyDADMAC acts as a destabilizer. Based on TSS, the addition of PAM will improve the size of microflocs created by polyDADMAC. It demonstrates that PAM acts as a bridger between microflocs.展开更多
文摘Flocculation studies between dual polymers on pulp and paper mill wastewater are reported in this paper. The effects of different molecular weights of polyDADMAC and different dosages of Polyacrylamide (PAM) were studied. The molecular weights of polyDADMAC used were 8.8×104, 10.5×104 and 15.7×104 g/mol. The flocculation performance was analyzed in jar tests with PolyDADMAC and Polyacrylamide dosages ranging from 0.4-2.0 mg/L﹣1 and 0.4-8.0 mg/L﹣1 respectively. A higher molecular weight and a 6.0 mg/L﹣1 dosagepolyDADMAC gave the highest level of flocculation based on turbidity and TSS removal. In addition, increasing the molecular weight of PolyDADMAC increased ζ potential values approaching zero. This indicated that polyDADMAC acts as a destabilizer. Based on TSS, the addition of PAM will improve the size of microflocs created by polyDADMAC. It demonstrates that PAM acts as a bridger between microflocs.