期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Robust general N User authentication scheme in a centralized quantum communication network via generalized G HZ states 被引量:4
1
作者 Ahmed Farouk J. Batle +6 位作者 m. Elhoseny mosayeb Naseri muzaffar Lone Alex Fedorov majid Alkhambashi Syed Hassan Ahmed m. abdel-aty 《Frontiers of physics》 SCIE CSCD 2018年第2期13-30,共18页
Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user... Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger-Horne-Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero. 展开更多
关键词 quantum communication quantum cryptography quantum authentication ENTANGLEMENT
原文传递
Cavity control as a new quantum algorithms implementation treatment 被引量:2
2
作者 m. AbuGhanem A. H. Homid m. abdel-aty 《Frontiers of physics》 SCIE CSCD 2018年第1期187-199,共13页
Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation time... Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Yhrthermore, this approach will lead to a successful implementation of these designs in future experiments. 展开更多
关键词 quantum computation quantum algorithms implementation cavity control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部