In this paper, the energy absorption mechanism of empty and foam-filled aluminum tubes with different cross-sections (circular, square and elliptic) under bending load is investigated numerically. The load-displacem...In this paper, the energy absorption mechanism of empty and foam-filled aluminum tubes with different cross-sections (circular, square and elliptic) under bending load is investigated numerically. The load-displacement curves of the present simulations are in very good agreement with those of published experimental data. Here, the existing analytical formulations are reviewed and compared with experimental results. In addition, the effects of different cross-sections and wall thicknesses on the energy absorption capacity and specific energy absorption of these tubes are fully investigated. The results indicate that the energy absorption of an elliptic foam-filled tube with 1.5 mm and 2 mm thicknesses increases about 45% and 73% in comparison with a square one, respectively.展开更多
文摘In this paper, the energy absorption mechanism of empty and foam-filled aluminum tubes with different cross-sections (circular, square and elliptic) under bending load is investigated numerically. The load-displacement curves of the present simulations are in very good agreement with those of published experimental data. Here, the existing analytical formulations are reviewed and compared with experimental results. In addition, the effects of different cross-sections and wall thicknesses on the energy absorption capacity and specific energy absorption of these tubes are fully investigated. The results indicate that the energy absorption of an elliptic foam-filled tube with 1.5 mm and 2 mm thicknesses increases about 45% and 73% in comparison with a square one, respectively.