A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics o...A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.展开更多
In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intri...In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intrinsic divertor for heliotron devices, accompanied with a relatively thick ergodic layer outside the confinement region. Edge and divertor plasma behavior from low density to high density regimes is presented, referring to the divertor detachment. The effect of the ergodic layer on the edge transport is also discussed. On the other hand, the LID is an advanced divertor concept which realizes a high pumping efficiency by the combination of an externally induced magnetic island and a closed pumping system. Experimental results to confirm the fundamental divertor performance of the LID are presented.展开更多
文摘A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.
基金supported by NIFS under Grant(No.NIFS05ULPP506)in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intrinsic divertor for heliotron devices, accompanied with a relatively thick ergodic layer outside the confinement region. Edge and divertor plasma behavior from low density to high density regimes is presented, referring to the divertor detachment. The effect of the ergodic layer on the edge transport is also discussed. On the other hand, the LID is an advanced divertor concept which realizes a high pumping efficiency by the combination of an externally induced magnetic island and a closed pumping system. Experimental results to confirm the fundamental divertor performance of the LID are presented.