The nonlinear propagation of dust-acoustic (DA) solitary waves in three-component unmagnetized dusty plasma consisting of Maxwellian electrons, vortex-like (trapped) ions, and arbitrarily charged cold mobile dust grai...The nonlinear propagation of dust-acoustic (DA) solitary waves in three-component unmagnetized dusty plasma consisting of Maxwellian electrons, vortex-like (trapped) ions, and arbitrarily charged cold mobile dust grain has been investigated. It has been found that, owing to the departure from the Maxwellian ions distribution to a vortex-like one, the dynamics of small but finite amplitude DA waves is governed by a nonlinear equation of modified Korteweg-de Vries (mK-dV) type instead of K-dV. The reductive perturbation method has been employed to study the basic features (phase speed, amplitude, width, etc.) of DA solitary waves which are significantly modified by the presence of trapped ions. The implications of our results in space and laboratory plasmas are briefly discussed.展开更多
文摘The nonlinear propagation of dust-acoustic (DA) solitary waves in three-component unmagnetized dusty plasma consisting of Maxwellian electrons, vortex-like (trapped) ions, and arbitrarily charged cold mobile dust grain has been investigated. It has been found that, owing to the departure from the Maxwellian ions distribution to a vortex-like one, the dynamics of small but finite amplitude DA waves is governed by a nonlinear equation of modified Korteweg-de Vries (mK-dV) type instead of K-dV. The reductive perturbation method has been employed to study the basic features (phase speed, amplitude, width, etc.) of DA solitary waves which are significantly modified by the presence of trapped ions. The implications of our results in space and laboratory plasmas are briefly discussed.