期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Influence of Heat Input on Martensite Formation and Impact Property of Ferritic-Austenitic Dissimilar Weld Metals 被引量:5
1
作者 m. mukherjee T.K. Pal 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第4期343-352,共10页
The effect of heat input on martensite formation and impact properties of gas metal arc welded modified ferritic stainless steel (409M) sheets (as received) with thickness of 4 mm was described in detail in this w... The effect of heat input on martensite formation and impact properties of gas metal arc welded modified ferritic stainless steel (409M) sheets (as received) with thickness of 4 mm was described in detail in this work. The welded joints were prepared under three heat input conditions, i.e. 0.4, 0.5 and 0.6 kJ/mm using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5% CO2. The welded joints were evaluated by microstructure and charpy impact toughness. The dependence of weld metal microstructure on heat input and filler wires were determined by dilution calculation, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM) and transmission electron microscopy (TEM). It was observed that the microstructure as well as impact property of weld metal was significantly affected by the heat input and filler wire. Weld metals prepared by high heat input exhibited higher amount of martensite laths and toughness compared with those prepared by medium and low heat inputs, which was true for both the filler wires. Furthermore, 308L weld metals in general provided higher amount of martensite laths and toughness than 316L weld metals. 展开更多
关键词 Heat input Ferritic-austenitic dissimilar weld MARTENSITE Grain size TOUGHNESS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部