Application of Nemacur in Gaza strip increased rapidly as a potential alternative to the widely used soil sterilizing agent methyl bromide. Nemacur application may contaminate soil, water and plant systems due to its ...Application of Nemacur in Gaza strip increased rapidly as a potential alternative to the widely used soil sterilizing agent methyl bromide. Nemacur application may contaminate soil, water and plant systems due to its high solubility in water. The objective of this study was to determine Nemacur residues soil, water, and cucumber samples collected from a field plots applied Nemacur at different field rates (0.0, 0.5 F, 1 F, 2 F) where F is the recommended field rate of Nemacur (4 kg/Hectare). Nemacur residues were determined by chemo-assay and bioassay techniques. Results revealed that considerable Nemacur concentrations were found in cucumber fruits and plant leaves. Nemacur residues were higher in water samples collected from sandy soil (7.2 μg/L) than from clay soil (3.4 μg/L). Furthermore, Nemacur residues in sandy soil (0.23 μg/kg) were lower than those in clay soil (1.3 μg/kg). In addition, Nemacur concentration in top soil layer in clay soil was lower than other layers. Nemacur residues in cucumber fruits grown in sandy soil were lower than those in cucumber fruits grown in clay soil. Nemacur residues in cucumber fruits collected from the market were below detection limit of HPLC technique. Chemo-assay techniques determined lower concentration of Nemacur than bioassay techniques. It can be concludes that considerable concentrations of Nemacur were found in all tested samples. Comparing with maximum residues limits (MRLS). Nemacur concentrations in various environmental samples were less than the maximum residues limits.展开更多
文摘Application of Nemacur in Gaza strip increased rapidly as a potential alternative to the widely used soil sterilizing agent methyl bromide. Nemacur application may contaminate soil, water and plant systems due to its high solubility in water. The objective of this study was to determine Nemacur residues soil, water, and cucumber samples collected from a field plots applied Nemacur at different field rates (0.0, 0.5 F, 1 F, 2 F) where F is the recommended field rate of Nemacur (4 kg/Hectare). Nemacur residues were determined by chemo-assay and bioassay techniques. Results revealed that considerable Nemacur concentrations were found in cucumber fruits and plant leaves. Nemacur residues were higher in water samples collected from sandy soil (7.2 μg/L) than from clay soil (3.4 μg/L). Furthermore, Nemacur residues in sandy soil (0.23 μg/kg) were lower than those in clay soil (1.3 μg/kg). In addition, Nemacur concentration in top soil layer in clay soil was lower than other layers. Nemacur residues in cucumber fruits grown in sandy soil were lower than those in cucumber fruits grown in clay soil. Nemacur residues in cucumber fruits collected from the market were below detection limit of HPLC technique. Chemo-assay techniques determined lower concentration of Nemacur than bioassay techniques. It can be concludes that considerable concentrations of Nemacur were found in all tested samples. Comparing with maximum residues limits (MRLS). Nemacur concentrations in various environmental samples were less than the maximum residues limits.