In this paper, two different numerical schemes, namely the Runge-Kutta fourth order method and the implicit Euler method with perturbation method of the second degree, are applied to solve the nonlinear thermal wave i...In this paper, two different numerical schemes, namely the Runge-Kutta fourth order method and the implicit Euler method with perturbation method of the second degree, are applied to solve the nonlinear thermal wave in one and two dimensions using the differential quadrature method. The aim of this paper is to make comparison between previous numerical schemes and detect which is more efficient and more accurate by comparing the obtained results with the available analytical ones and computing the computational time.展开更多
In this paper, an efficient technique of differential quadrature method and perturbation method is employed to analyze reaction-diffusion problems. An efficient method is presented to solve thermal wave propagation mo...In this paper, an efficient technique of differential quadrature method and perturbation method is employed to analyze reaction-diffusion problems. An efficient method is presented to solve thermal wave propagation model in one and two dimensions. The proposed method marches in the time direction block by block and there are several time levels in each block. The global method of differential quadrature is applied in each block to discretize both the spatial and temporal derivatives. Furthermore, the proposed method is validated by comparing the obtained results with the available analytical ones and also compared with the hybrid technique of differential quadrature method and Runge-Kutta fourth order method.展开更多
文摘In this paper, two different numerical schemes, namely the Runge-Kutta fourth order method and the implicit Euler method with perturbation method of the second degree, are applied to solve the nonlinear thermal wave in one and two dimensions using the differential quadrature method. The aim of this paper is to make comparison between previous numerical schemes and detect which is more efficient and more accurate by comparing the obtained results with the available analytical ones and computing the computational time.
文摘In this paper, an efficient technique of differential quadrature method and perturbation method is employed to analyze reaction-diffusion problems. An efficient method is presented to solve thermal wave propagation model in one and two dimensions. The proposed method marches in the time direction block by block and there are several time levels in each block. The global method of differential quadrature is applied in each block to discretize both the spatial and temporal derivatives. Furthermore, the proposed method is validated by comparing the obtained results with the available analytical ones and also compared with the hybrid technique of differential quadrature method and Runge-Kutta fourth order method.