By Invoking symmetry principle, we present a self-consistent interpretation of the existing quantum theory which explains why our world is fundamentally indeterministic and that why non-local quantum jumps occur. Symm...By Invoking symmetry principle, we present a self-consistent interpretation of the existing quantum theory which explains why our world is fundamentally indeterministic and that why non-local quantum jumps occur. Symmetry principle dictates that the concept of probability is more fundamental than the notion of the wave function in that the former can be derived directly from symmetries rather than have to be assumed as an additional axiom. It is argued that the notion of quantum probability and that of the wavefunction are intimately connected.展开更多
Motivated by Bekenstein’s original thought that led him to his famous area-entropy formula for a black hole and by our recent study regarding the black hole dynamics, we identify the appropriate microscopic degrees o...Motivated by Bekenstein’s original thought that led him to his famous area-entropy formula for a black hole and by our recent study regarding the black hole dynamics, we identify the appropriate microscopic degrees of freedom in loop quantum gravity that are responsible for the black hole entropy. We achieve consistent results by taking the <em>j</em> = 1/2 edges as dominant and by subjecting these edges to experience quantum fluctuations at the horizon. This also leads to a modification of the value of the Immirzi parameter in the <em>SU</em>(2) framework.展开更多
文摘By Invoking symmetry principle, we present a self-consistent interpretation of the existing quantum theory which explains why our world is fundamentally indeterministic and that why non-local quantum jumps occur. Symmetry principle dictates that the concept of probability is more fundamental than the notion of the wave function in that the former can be derived directly from symmetries rather than have to be assumed as an additional axiom. It is argued that the notion of quantum probability and that of the wavefunction are intimately connected.
文摘Motivated by Bekenstein’s original thought that led him to his famous area-entropy formula for a black hole and by our recent study regarding the black hole dynamics, we identify the appropriate microscopic degrees of freedom in loop quantum gravity that are responsible for the black hole entropy. We achieve consistent results by taking the <em>j</em> = 1/2 edges as dominant and by subjecting these edges to experience quantum fluctuations at the horizon. This also leads to a modification of the value of the Immirzi parameter in the <em>SU</em>(2) framework.