Let G be a group and G' be its commutator subgroup. An automorphism α of a group G is called an IA-automorphism if x^-1α(x) ∈G' for each x∈G. The set of all IA-automorphisms of G is denoted by IA(G). A group...Let G be a group and G' be its commutator subgroup. An automorphism α of a group G is called an IA-automorphism if x^-1α(x) ∈G' for each x∈G. The set of all IA-automorphisms of G is denoted by IA(G). A group G is called semicomplete if and only if IA(G) = Inn(G), where Inn(G) is the inner automorphism group of G. In this paper we completely characterize semicomplete finite p-groups of class 2; we also classify all semicomplete finite p-groups of order p^n (n≤5), where p is an odd prime. This completes our work in 2011.展开更多
文摘Let G be a group and G' be its commutator subgroup. An automorphism α of a group G is called an IA-automorphism if x^-1α(x) ∈G' for each x∈G. The set of all IA-automorphisms of G is denoted by IA(G). A group G is called semicomplete if and only if IA(G) = Inn(G), where Inn(G) is the inner automorphism group of G. In this paper we completely characterize semicomplete finite p-groups of class 2; we also classify all semicomplete finite p-groups of order p^n (n≤5), where p is an odd prime. This completes our work in 2011.