Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8 × 10^18 cm^-...Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8 × 10^18 cm^-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom occupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 50372007 and 50572007, Russian Fund for Basic Research under Grant Nos 06-02-39031 and 07-03-00956, and Belarus Republic Foundation for Basic Research under Grant No F05-281.
文摘Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8 × 10^18 cm^-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom occupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.