The de-noising of the fingerprint image is one of the key tasks before the extraction of the minutiae in automatic fingerprint matching. When used for de-noising the fingerprint image, the nonlocal means method can no...The de-noising of the fingerprint image is one of the key tasks before the extraction of the minutiae in automatic fingerprint matching. When used for de-noising the fingerprint image, the nonlocal means method can not preserve the local minutiae in the fingerprint image very well. To address this problem, we propose a local orientation field based nonlocal means (NLM-LOF) method in this paper. Experimental results on the simulated and real images show that the proposed method can suppress noise effectively while preserving edges and details in the fingerprint image and it outperforms the state-of-art nonlocal means method in terms of qualitative metrics and visual comparisons.展开更多
文摘The de-noising of the fingerprint image is one of the key tasks before the extraction of the minutiae in automatic fingerprint matching. When used for de-noising the fingerprint image, the nonlocal means method can not preserve the local minutiae in the fingerprint image very well. To address this problem, we propose a local orientation field based nonlocal means (NLM-LOF) method in this paper. Experimental results on the simulated and real images show that the proposed method can suppress noise effectively while preserving edges and details in the fingerprint image and it outperforms the state-of-art nonlocal means method in terms of qualitative metrics and visual comparisons.