The influence of irradiation on biosyntheses of ascorbic acid and riboflavin in germinating chickpea seeds at ambient (25-35℃) conditions, was investigated. The rate of syntheses of these vitamins significantly incre...The influence of irradiation on biosyntheses of ascorbic acid and riboflavin in germinating chickpea seeds at ambient (25-35℃) conditions, was investigated. The rate of syntheses of these vitamins significantly increased with increasing germination time upto 120 h depending upon the treatment (P【0.05). Maximum amounts of ascorbic acid, 22.32 and 16.84 mg/100g, were found in the 0.10 kGy sample after 120 h of germination in tap and distilled water respectively. However, a radiation dose of 0.15 kGy resulted in the development of maximum values of riboflavin, 11.40 and 11.38 μ g/g, on germination in tap and distilled water respectively. A significant linear relation (r = 0-954 to 0.997) was observed between the biosyntheses of these vitamins and the germination time upto 120 h of irradiated and unirradiated chickpea seed (P【0.05).展开更多
文摘The influence of irradiation on biosyntheses of ascorbic acid and riboflavin in germinating chickpea seeds at ambient (25-35℃) conditions, was investigated. The rate of syntheses of these vitamins significantly increased with increasing germination time upto 120 h depending upon the treatment (P【0.05). Maximum amounts of ascorbic acid, 22.32 and 16.84 mg/100g, were found in the 0.10 kGy sample after 120 h of germination in tap and distilled water respectively. However, a radiation dose of 0.15 kGy resulted in the development of maximum values of riboflavin, 11.40 and 11.38 μ g/g, on germination in tap and distilled water respectively. A significant linear relation (r = 0-954 to 0.997) was observed between the biosyntheses of these vitamins and the germination time upto 120 h of irradiated and unirradiated chickpea seed (P【0.05).