This work deals with the numerical localization of small electromagnetic inhomogeneities. The underlying inverse problem considers, in a three-dimensional bounded domain, the time-harmonic Maxwell equations formulated...This work deals with the numerical localization of small electromagnetic inhomogeneities. The underlying inverse problem considers, in a three-dimensional bounded domain, the time-harmonic Maxwell equations formulated in electric field. Typically, the domain contains a finite number of unknown inhomogeneities of small volume and the inverse problem attempts to localize these inhomogeneities from a finite number of boundary measurements. Our localization approach is based on a recent framework that uses an asymptotic expansion for the perturbations in the tangential boundary trace of the curl of the electric field. We present three numerical localization procedures resulting from the combination of this asymptotic expansion with each of the following inversion algorithms: the Current Projection method, the MUltiple Signal Classification (MUSIC) algorithm, and an Inverse Fourier method. We perform a numerical study of the asymptotic expansion and compare the numerical results obtained from the three localization procedures in different settings.展开更多
基金supported by ACI NIM (171) from the French Ministry of Education and Scientific Research
文摘This work deals with the numerical localization of small electromagnetic inhomogeneities. The underlying inverse problem considers, in a three-dimensional bounded domain, the time-harmonic Maxwell equations formulated in electric field. Typically, the domain contains a finite number of unknown inhomogeneities of small volume and the inverse problem attempts to localize these inhomogeneities from a finite number of boundary measurements. Our localization approach is based on a recent framework that uses an asymptotic expansion for the perturbations in the tangential boundary trace of the curl of the electric field. We present three numerical localization procedures resulting from the combination of this asymptotic expansion with each of the following inversion algorithms: the Current Projection method, the MUltiple Signal Classification (MUSIC) algorithm, and an Inverse Fourier method. We perform a numerical study of the asymptotic expansion and compare the numerical results obtained from the three localization procedures in different settings.