The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named ...The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named the convective boundary condition. Governing equations for the flow problem are derived by the boundary layer approximations. The modeled highly coupled partial differential system is converted into a system of ordinary differential equations with acceptable similarity transformations. The convergent series solutions for the resulting system are constructed and analyzed. Optimal values are obtained and presented in a numerical form using an optimal homotopy analysis method (OHAM). The rheological characteristics of different parameters of the velocity and temperature profiles are presented graphically. Tabular variations of the skin friction coefficient and the Nusselt number are also calculated. It is observed that the temperature distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore, the rate of heating/cooling is higher for both the Prandtl and Biot numbers.展开更多
The Newtonian heating effects in the stagnation point flow of a Burgers fluid are addressed in this paper. The boundary layer flow problems are stated in the spatial domain from zero to infinity. The solution expressi...The Newtonian heating effects in the stagnation point flow of a Burgers fluid are addressed in this paper. The boundary layer flow problems are stated in the spatial domain from zero to infinity. The solution expressions for the velocity and the temperature are obtained and examined for the influential variables. The tabulated values show comparison with the previous results. It is observed that the obtained results are in good agreement with the existing results in limiting sense.展开更多
We investigate an unsteady axisymmetric flow of a Jeffrey fluid between two parallel disks.The relevant partial differential equations are modeled and simplified by using appropriate transformations.The resulting ordi...We investigate an unsteady axisymmetric flow of a Jeffrey fluid between two parallel disks.The relevant partial differential equations are modeled and simplified by using appropriate transformations.The resulting ordinary differential system is solved and a series solution is obtained.Effects of various parameters of interest on the flow quantities are seen.It is found that the velocity profile increases when porosity and squeezing parameters are increased.展开更多
Current exertion is made to depict and search out the flow features imparted to viscid fluid flow over a rotational disk. Impression of magnetic field with rotating fluid is generated by interacting it in radial direc...Current exertion is made to depict and search out the flow features imparted to viscid fluid flow over a rotational disk. Impression of magnetic field with rotating fluid is generated by interacting it in radial direction.Nano structured particles with magnetized fluid are also incorporated in the upshot of chemical reaction and absorptive/generative heat induction. Von Kumaran procedure is executed to obtain flow narrating differential expressions.Flow pattern regarding thermal, momentum profiles are comprehended with the support of shooting method and RungeKutta methods. Furthermore, to get more realistic view of result description computational algorithm is modified by improving Runge-Kutta coefficients with Cash and Carp method. The aspects of flow controlling parameters like momentum slip parameter, magnetic strength parameter, Brownian motion parameter, thermophoresis parameter are adorned in sketches. Findings of these architects are accumulated in conclusion section.展开更多
文摘The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named the convective boundary condition. Governing equations for the flow problem are derived by the boundary layer approximations. The modeled highly coupled partial differential system is converted into a system of ordinary differential equations with acceptable similarity transformations. The convergent series solutions for the resulting system are constructed and analyzed. Optimal values are obtained and presented in a numerical form using an optimal homotopy analysis method (OHAM). The rheological characteristics of different parameters of the velocity and temperature profiles are presented graphically. Tabular variations of the skin friction coefficient and the Nusselt number are also calculated. It is observed that the temperature distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore, the rate of heating/cooling is higher for both the Prandtl and Biot numbers.
文摘The Newtonian heating effects in the stagnation point flow of a Burgers fluid are addressed in this paper. The boundary layer flow problems are stated in the spatial domain from zero to infinity. The solution expressions for the velocity and the temperature are obtained and examined for the influential variables. The tabulated values show comparison with the previous results. It is observed that the obtained results are in good agreement with the existing results in limiting sense.
基金Supported by Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia.
文摘We investigate an unsteady axisymmetric flow of a Jeffrey fluid between two parallel disks.The relevant partial differential equations are modeled and simplified by using appropriate transformations.The resulting ordinary differential system is solved and a series solution is obtained.Effects of various parameters of interest on the flow quantities are seen.It is found that the velocity profile increases when porosity and squeezing parameters are increased.
文摘Current exertion is made to depict and search out the flow features imparted to viscid fluid flow over a rotational disk. Impression of magnetic field with rotating fluid is generated by interacting it in radial direction.Nano structured particles with magnetized fluid are also incorporated in the upshot of chemical reaction and absorptive/generative heat induction. Von Kumaran procedure is executed to obtain flow narrating differential expressions.Flow pattern regarding thermal, momentum profiles are comprehended with the support of shooting method and RungeKutta methods. Furthermore, to get more realistic view of result description computational algorithm is modified by improving Runge-Kutta coefficients with Cash and Carp method. The aspects of flow controlling parameters like momentum slip parameter, magnetic strength parameter, Brownian motion parameter, thermophoresis parameter are adorned in sketches. Findings of these architects are accumulated in conclusion section.