期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations
1
作者 Mohammad Asif Arefin m.ayesha khatun +1 位作者 M.Hafiz Uddin Mustafa Inc 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期292-303,共12页
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m... This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering. 展开更多
关键词 Riemann-Liouville fractional derivative Space-time fractional(2+1)-dimensional dispersive long wave equation Approximate long water wave equation Wave transformation The two-variable(G′/G 1/G)-expansion method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部