In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(...In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(γ-graphyne) nanoribbons. The results show that all the studied nanoribbons are semiconductor and their band gaps decrease as the widths of nanoribbons increase, which will result in increasing current at a certain voltage. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.展开更多
文摘In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(γ-graphyne) nanoribbons. The results show that all the studied nanoribbons are semiconductor and their band gaps decrease as the widths of nanoribbons increase, which will result in increasing current at a certain voltage. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.