The inversion of the particle size distribution from electrical mobility measurements is analyzed. Three different methods are adapted for a dot-matrix approach to the problem, especially for non-square or singular ma...The inversion of the particle size distribution from electrical mobility measurements is analyzed. Three different methods are adapted for a dot-matrix approach to the problem, especially for non-square or singular matrices, and applied to electrical mobility measurements from fixed or scanning voltages. Mul- tiply charged particles, diffusion losses, arbitrary voltage steps and noise were considered, which results in non-adjoining and overlapping transfer functions. The individual contribution of the transfer func- tions in each size interval was geometrically estimated, which requires only its characteristic mobilities. The methodology is applied to mobility measurements from particles charged with unipolar and bipolar chargers. However, the method can be extrapolated to any charging method with a defined charge distribution, and retrieval of the singly charged particle distribution and mean charge from a tandem differential mobility analysis configuration was successfully demonstrated.展开更多
基金support under the project MEC05CGL2005-05244/CLI and grant BES-2006-12469supported by the Deutsche Forschungsgemeinschaft(DFG) in the framework of the joint research program "Multiparameter Characterization of Particle-based Functional Materials by Innovative Online Measurement Technology" (PAK688)
文摘The inversion of the particle size distribution from electrical mobility measurements is analyzed. Three different methods are adapted for a dot-matrix approach to the problem, especially for non-square or singular matrices, and applied to electrical mobility measurements from fixed or scanning voltages. Mul- tiply charged particles, diffusion losses, arbitrary voltage steps and noise were considered, which results in non-adjoining and overlapping transfer functions. The individual contribution of the transfer func- tions in each size interval was geometrically estimated, which requires only its characteristic mobilities. The methodology is applied to mobility measurements from particles charged with unipolar and bipolar chargers. However, the method can be extrapolated to any charging method with a defined charge distribution, and retrieval of the singly charged particle distribution and mean charge from a tandem differential mobility analysis configuration was successfully demonstrated.