期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of Radiation and Slip on Newtonian Liquid Flow Past a Porous Stretching/Shrinking Sheet in the Presence of Carbon Nanotubes
1
作者 U.S.Mahabaleshwar T.Anusha +1 位作者 m.el ganaoui R.Bennacer 《Fluid Dynamics & Materials Processing》 EI 2023年第4期929-939,共11页
The impacts of radiation,mass transpiration,and volume fraction of carbon nanotubes on the flow of a Newtonian fluid past a porous stretching/shrinking sheet are investigated.For this purpose,three types of base liqui... The impacts of radiation,mass transpiration,and volume fraction of carbon nanotubes on the flow of a Newtonian fluid past a porous stretching/shrinking sheet are investigated.For this purpose,three types of base liquids are considered,namely,water,ethylene glycol and engine oil.Moreover,single and multi-wall carbon nanotubes are examined in the analysis.The overall physical problem is modeled using a system of highly nonlinear partial differential equations,which are then converted into highly nonlinear third order ordinary differential equations via a suitable similarity transformation.These equations are solved analytically along with the corresponding boundary conditions.It is found that the carbon nanotubes can significantly improve the heat transfer process.Their potential application in cutting-edge areas is also discussed to a certain extent. 展开更多
关键词 Carbon nanotubes porous media newtonian fluid RADIATION
下载PDF
Galerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosure 被引量:2
2
作者 A.Zaim A.Aissa +4 位作者 F.Mebarek-Oudina B.Mahanthesh G.Lorenzini M.Sahnoun m.el ganaoui 《Propulsion and Power Research》 SCIE 2020年第4期383-393,共11页
In this paper,single-phase homogeneous nanofluid model is proposed to investigate the natural convection of magneto-hydrodynamic(MIID)flow of Newtonian Cu—H20 nanoli­quid in a baffled U-shaped enclosure.The Brin... In this paper,single-phase homogeneous nanofluid model is proposed to investigate the natural convection of magneto-hydrodynamic(MIID)flow of Newtonian Cu—H20 nanoli­quid in a baffled U-shaped enclosure.The Brinkman model and Wasp model are considered to measure the effective dynamic viscosity and effective thermal conductivity of the nanoliquid coreespondingly.Nanoliquid's effective properties such as specific heat,density and thermal expansion coefficient are modeled using mixture theory.The complicated PDS(partial differ­ential system)is treated for numeric solutions via the Galerkin finite element method.The perti­nent parameters Hartmann number(1≤Ha≤60),Rayleigh number(10^(3)≤Ra≤10^(6))and nanoparticles volume fraction (0% ≤Ф≤4%) are taken for the parametric analysis, and it is conducted via streamlines and isotherms. Excellent agreement between numerical results and open literature. It is ascertained that heat transfer rate enhances with Rayleigh number Ra and volume fraction 0, however it is diminished for laiger Hartmann number Ha. 展开更多
关键词 Natural convection Nanoliquid Rayleigh number Baffled U-shaped Nusselt number Galerkin finite element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部