In this work,we consider a stochastic epidemic model with vaccination,healing and relapse.We prove the existence and the uniqueness of the positive solution.We establish sufficient conditions for the extinction and th...In this work,we consider a stochastic epidemic model with vaccination,healing and relapse.We prove the existence and the uniqueness of the positive solution.We establish sufficient conditions for the extinction and the persistence in mean of the stochastic system.Moreover,we also establish sufficient conditions for the existence of ergodic stationary distribution to the model,which reveals that the infectious disease will persist.The graphical illustrations of the approximate solutions of the stochastic epidemic model have been performed.展开更多
文摘In this work,we consider a stochastic epidemic model with vaccination,healing and relapse.We prove the existence and the uniqueness of the positive solution.We establish sufficient conditions for the extinction and the persistence in mean of the stochastic system.Moreover,we also establish sufficient conditions for the existence of ergodic stationary distribution to the model,which reveals that the infectious disease will persist.The graphical illustrations of the approximate solutions of the stochastic epidemic model have been performed.