期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Linear Volterra Integral Equations as the Limit of Discrete Systems
1
作者 m.federson R.Bianconi L.Barbanti 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第4期623-640,共18页
We consider the multidimensional abstract linear integral equation of Volterra type (1), as the limit of discrete Stieltjes-type systems and we prove results on the existence of continuous solutions. The functi... We consider the multidimensional abstract linear integral equation of Volterra type (1), as the limit of discrete Stieltjes-type systems and we prove results on the existence of continuous solutions. The functions x, &#945; and f are Banach space-valued defined on a compact interval R of , R <SUB>t </SUB>is a subinterval of R depending on t &#8712; R and (&#8902;) &#8747; denotes either the Bochner-Lebesgue integral or the Henstock integral. The results presented here generalize those in [1] and are in the spirit of [3]. As a consequence of our approach, it is possible to study the properties of (1) by transferring the properties of the discrete systems. The Henstock integral setting enables us to consider highly oscillating functions. 展开更多
关键词 Linear volterra integral equations Henstock-Kurzweil integrals
原文传递
Linear Volterra Integral Equations
2
作者 m.federson R.Bianconi L.Barbanti 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2002年第4期553-560,共8页
The Kurzweil-Henstock integral formalism is applied to establish the existence of solutions to the linear integral equations of Volterra-typewhere the functions are Banach-space valued. Special theorems on existence o... The Kurzweil-Henstock integral formalism is applied to establish the existence of solutions to the linear integral equations of Volterra-typewhere the functions are Banach-space valued. Special theorems on existence of solutions concerning the Lebesgu3 integral setting are obtained. These sharpen earlier results. 展开更多
关键词 Linear Volterra integral equations Kurzweil-Henstock integrals
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部