期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Thermal instability and dynamic response analysis of a tensioned carbon nanotube under moving uniformly distributed external pressure
1
作者 A.A.Yinusa m.g.sobamowo 《Nano Materials Science》 CAS CSCD 2021年第1期75-88,共14页
Single-walled carbon nanotubes(SWCNTs)are receiving immense research attention due to their tremendous thermal,electrical,structural and mechanical properties.In this paper,an exact solution of the dynamic response of... Single-walled carbon nanotubes(SWCNTs)are receiving immense research attention due to their tremendous thermal,electrical,structural and mechanical properties.In this paper,an exact solution of the dynamic response of SWCNT with a moving uniformly distributed load is presented.The SWCNT is modelled via the theories of Bernoulli-Euler-thermal elasticity mechanics and solved using Integral transforms.The developed closed-form solution in the present work is compared with existing results and excellent agreements are established.The parametric studies show that as the magnitude of the pressure distribution at the surface increases,the deflection associated with the single walled nanotube increases at any mode whilst a corresponding increase in temperature and foundation parameter have an attenuating effect on deflection.Moreover,an increase in the Winkler parameter,as well as a decrease in the SWCNT mass increases its frequency of vibration.Furthermore,an increase in the speed of the external agent decreases the total external pressure as a result of the removal of dead loads.The present work is envisaged to improve the application of SWCNT as nanodevices for structural,electrical and mechanical systems. 展开更多
关键词 Thermal and moving external uniform pressure Tensioned carbon nanotube Dynamic and stability analysis Integral transform
下载PDF
Nonlinear vibration analysis of an embedded branched nanofluid-conveying carbon nanotube:Influence of downstream angle,temperature change and two dimensional external magnetic field
2
作者 A.A.Yinusa m.g.sobamowo A.O.Adelaja 《Nano Materials Science》 CAS 2020年第4期323-332,共10页
In this study,non-linear thermal-mechanical stability and vibration analyses of different end-shaped single-walled carbon nanotube conveying viscous nano-magnetic fluid embedded in non-linear visco-elastic foundation ... In this study,non-linear thermal-mechanical stability and vibration analyses of different end-shaped single-walled carbon nanotube conveying viscous nano-magnetic fluid embedded in non-linear visco-elastic foundation under the influence of magnetic fields are presented.The development of the equation of motion was based on Euler-Bernoulli theory,Hamilton principle and nonlocal elasticity theory.The results of the analytical solutions using Galerkin decomposition differential transform method(GDDTM)were validated with existing experimental results.From the parametric studies,it was shown that decreasing the temperature difference as well as increasing the downstream angle decreased the system's stability for pre-bifurcation analysis but increased stability of the system for post bifurcation analysis.Also,the results obtained from the dynamic behaviour of the system indicated that the magnetic effect had an attenuating impact of about 45%on the system's response at any mode and for any boundary condition considered.It is hoped that this work will enhance the design and optimization of nano-devices with I,V,Y,L,K and T-shaped junctions under the influence of thermal-magneto-mechanical flow induced vibration. 展开更多
关键词 Thermal-mechanical vibration Branched single walled carbon nanotube Magnetic field Galerkin and differential transformation method Dynamic and stability analysis
下载PDF
A Study on Thermal Performance of Palladium as Material for Passive Heat Transfer Enhancement Devices in Thermal and Electronics Systems
3
作者 m.g.sobamowo S.A.Ibrahim M.O.Salami 《Semiconductor Science and Information Devices》 2020年第2期15-24,共10页
In this work,the thermal behavior of fin made of palladium material under the influences of thermal radiation and internal heat generation is investigated.The thermal model for the extended surface made of palladium a... In this work,the thermal behavior of fin made of palladium material under the influences of thermal radiation and internal heat generation is investigated.The thermal model for the extended surface made of palladium as the fin material is first developed and solved numerically using finite difference method.The influences of the thermal model parameters on the heat transfer behaviour of the extended surface are investigated.The results show that the rate of heat transfer through the fin and the thermal efficiency of the fin increase as the thermal conductivity of the fin material increases.This shows that fin is more efficient and effective for a larger value of thermal conductivity.However,the thermal conductivity of the fin with palladium material is low and constant at the value of approximately 75 W/mK in a wider temperature range of-100℃and 227℃.Also,it is shown that the thermal efficiencies of potential materials(except for stainless steel and brass)for fins decrease as the fin temperatures increase.This is because the thermal conductivities of most of the materials used for fins decreases as temperature increases.However,keeping other fin properties and the external conditions constant,the thermal efficiency of the palladium is constant as the temperature of the fin increases within the temperature range of-100℃and 227℃.And outside the given range of temperature,the thermal conductivity of the material increases which increases the efficiency of the fin.The study will assist in the selection of proper material for the fin and in the design of passive heat enhancement devices under different applications and conditions. 展开更多
关键词 FINS Thermal analysis PALLADIUM Thermal Performance Heat transfer enhancement
下载PDF
A Study on the Effects of Internal Heat Generation on the Thermal Performance of Solid and Porous Fins using Differential Transformation Method
4
作者 m.g.sobamowo O.A.Adedibu +1 位作者 O.A.Adeleye A.O.Adesina 《Semiconductor Science and Information Devices》 2020年第1期29-36,共8页
In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the... In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the fin heat dissipating capacity but the internal heat generation decreases the heat enhancement capacity of extended surface.Also,it is established that when the internal heat parameter increases to some certain values,some negative effects are recorded where the fin stores heat rather than dissipating it.This scenario defeats the prime purpose of the cooling fin.Additionally,it is established in the present study that the limiting value of porosity parameter for thermal stability for the passive device increases as internal heat parameter increases.This shows that although the internal heat parameter can help assist higher range and value of thermal stability of the fin,it produces negative effect which greatly defeats the ultimate purpose of the fin.The results in the work will help in fin design for industrial applications where internal heat generation is involved. 展开更多
关键词 Thermal analysis Solid and porous fins Thermal performance Temperature-dependent internal heat generation Differential transformation method
下载PDF
Nonlinear Vibration Analysis of an Electrostatically Actuated Microbeam using Differential Transformation Method
5
作者 m.g.sobamowo A.A.Yinusa +1 位作者 O.A.Adesina O.M.Oyekeye 《Semiconductor Science and Information Devices》 2020年第2期1-4,共4页
In this paper,nonlinear vibration of electrostatically actuated microbeam is analyzed using differential transformation method.The high level of accuracy of the analytical solutions of the method was established throu... In this paper,nonlinear vibration of electrostatically actuated microbeam is analyzed using differential transformation method.The high level of accuracy of the analytical solutions of the method was established through comparison of the results of the solutions of exact analytical method,variational approach,homotopy analysis method and energy balance methods.Also,with the aid of the present analytical solution,the time response,velocity variation and the phase plots of the system are presented graphically.It is hope that the method will be widely applied to more nonlinear problems of systems in various fields of study. 展开更多
关键词 NARX-OBF Models Genetic Algorithm Levenberg Marquardt System identification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部