期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fictitious soil pile model for dynamic analysis of pipe piles under high-strain conditions
1
作者 Yuan TU m.h.el naggar +2 位作者 Kuihua WANG Wenbing WU Juntao WU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第6期915-934,共20页
A fictitious soil pile(FSP)model is developed to simulate the behavior of pipe piles with soil plugs undergoing high-strain dynamic impact loading.The developed model simulates the base soil with a fictitious hollow p... A fictitious soil pile(FSP)model is developed to simulate the behavior of pipe piles with soil plugs undergoing high-strain dynamic impact loading.The developed model simulates the base soil with a fictitious hollow pile fully filled with a soil plug extending at a cone angle from the pile toe to the bedrock.The friction on the outside and inside of the pile walls is distinguished using different shaft models,and the propagation of stress waves in the base soil and soil plug is considered.The motions of the pile—soil system are solved by discretizing them into spring-mass model based on the finite difference method.Comparisons of the predictions of the proposed model and conventional numerical models,as well as measurements for pipe piles in field tests subjected to impact loading,validate the accuracy of the proposed model.A parametric analysis is conducted to illustrate the influence of the model parameters on the pile dynamic response.Finally,the effective length of the FSP is proposed to approximate the affected soil zone below the pipe pile toe,and some guidance is provided for the selection of the model parameters. 展开更多
关键词 fictitious soil pile soil plug pipe piles high-strain dynamic analysis one-dimensional wave theory pile dynamics
原文传递
High-strain dynamic model of large-diameter pipe piles with soil plug for vertical vibration analysis
2
作者 Yuan Tu m.h.el naggar +2 位作者 Kuihua Wang Wenbing Wu Minjie Wen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第11期4440-4461,共22页
A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the... A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading. 展开更多
关键词 Fictitious-soil pile Large-diameter pipe piles Soil plug Pile vibration Elastic wave propagation High-strain dynamic analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部