Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been d...Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressuregradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.展开更多
基金Funding by the Government of Ontario and Atomic Energy of Canada Limited (AECL)
文摘Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressuregradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.