期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application 被引量:9
1
作者 R.YAH AYA S.M.SAPUAN +2 位作者 m.jawaid Z.LEMAN E.S.ZAINUDIN 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第1期52-58,共7页
This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength o... This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties. 展开更多
关键词 芳纶复合材料 材料力学性能 纤维取向 红麻 应用 剥落 编织复合材料 扫描电子显微镜
下载PDF
Effect of Fiber Loadings and Treatment on Dynamic Mechanical, Thermal and Flammability Properties of Pineapple Leaf Fiber and Kenaf Phenolic Composites 被引量:5
2
作者 M.Asim m.jawaid +1 位作者 M.Nasir N.Saba 《Journal of Renewable Materials》 SCIE 2018年第4期383-393,共11页
This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage mod... This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage modulus was decreased for all composites with increases in temperature and pattern of slopes for all composites,having almost the same values of E′at glass transition temperature(Tg).The peak of the loss modulus of pure phenolic composites was shown to be much less.After the addition of kenaf/PALF,peaks were higher and shifted towards a high temperature.The Tan delta peak height was low for pure phenolic composites and maximum for 60%PALF phenolic composites.Cole-Cole analysis was carried out to understand the phase behavior of the composite samples.Thermogravimetric analysis(TGA)results indicated that pure phenolic composites have better thermal stability than PALF and kenaf phenolic composites.Vertical and horizontal UL-94 tests were conducted and showed pure phenolic resin is highly fire resistant.The overall results showed that treated KF composites enhanced the dynamic mechanical and thermal properties among all PALF/KF composites. 展开更多
关键词 Pineapple leaf FIBER KENAF FIBER PHENOLIC resin DYNAMIC MECHANICAL analysis thermogravimetric analysis FLAMMABILITY
下载PDF
Effect of Hybridization on the Mechanical Properties of Pineapple Leaf Fiber/Kenaf Phenolic Hybrid Composites 被引量:4
3
作者 M.Asim m.jawaid +2 位作者 K.Abdan M.R.Ishak O.Y.Alothman 《Journal of Renewable Materials》 SCIE 2018年第1期38-46,共9页
In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the... In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the PALF/KF/PF hybrid composites were investigated and compared with PALF/KF composites.The 3P7K exhibited enhanced tensile strength(46.96 MPa)and modulus(6.84 GPa),flexural strength(84.21 MPa)and modulus(5.81 GPa),and impact strength(5.39 kJ/m2)when compared with the PALF/PF and KF/PF composites.Scanning electron microscopy(SEM)was used to observe the fracture surfaces of the tensile testing samples.The microstructure of the 7P3K hybrid composite showed good interfacial bonding and the addition of KF improved the interfacial strength.It has been concluded that the 3P7K ratio allowed obtaining materials with better mechanical properties(tensile,flexural and impact strengths)than PALF/PF and KF/PF composites.The results obtained in this study will be used for further comparative study of untreated hybrid composites with treated hybrid composites. 展开更多
关键词 Pineapple leaf fiber kenaf fiber phenolic resin hybrid composites mechanical properties
下载PDF
Manufacturing Process Selection of “Green” Oil Palm Natural Fiber Reinforced Polyurethane Composites Using Hybrid TEA Criteria Requirement and AHP Method for Automotive Crash Box 被引量:2
4
作者 N.S.B.Yusof S.M.Sapuan +1 位作者 M.T.H.Sultan m.jawaid 《Journal of Renewable Materials》 SCIE EI 2020年第6期647-660,共14页
In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist o... In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist of technical aspects(T),the economic point of view(E)and availability(A),and it’s also called as TEA requirement.This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage.In this study,the TEA requirement will integrate with the analytical hierarchy process(AHP)to assist decision makers or manufacturing engineers in determining the most appropriate manufacturing process to be employed in the manufacture of a composite automotive crash box(ACB)at the early stage of the product development process.It is obvious that a major challenge in the manufacturing selection process is lack of information regarding manufacturing of ACB using natural fibre composite(NFC).There have been no previous studies that examined ranking manufacturability processes in terms of their suitability.Therefore,the TEA-AHP hybrid method was introduced to provide unprejudiced criteria-ranking selection prior to evaluation of pairwise comparisons.At the end of this study,the pulforming process was selected as the best manufacturing process for fabrication of the ACB structural component. 展开更多
关键词 Manufacturing process selection automotive crash box natural fibre composites TEA requirement
下载PDF
Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites:Effect of Silane Treatment and Fiber Loading 被引量:1
5
作者 A.Atiqah m.jawaid +1 位作者 S.M.Sapuan M.R.Ishak 《Journal of Renewable Materials》 SCIE 2018年第5期477-492,共16页
The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loadin... The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loading(0,10,20,30,40 and 50 wt%)on the mechanical and thermal properties of the obtained composites.Surface treatment was employed to improve the fiber-matrix interface,which was expected to boost the mechanical strength of the composites,in terms of tensile,flexural and impact properties.Thermal properties were also investigated by thermal gravimetric analysis(TGA)and dynamic mechanical analysis(DMA)to assess the thermal stability of the developed composites.Furthermore,scanning electron microscopy(SEM)was used to study the tensile fracture samples of composites with a view towards evaluating the effects of fiber surface treatments on the fiber/matrix interfacial bonding.The findings of this study reveal that the silane treatment has determined good bonding and linkage of the cellulose fiber to the TPU matrix,hence contributing to enhanced mechanical and thermal properties of the composites.The composite formulation with 40 wt%sugar palm fiber loading showed optimum values such as 17.22 MPa for tensile,13.96 MPa for flexural,and 15.47 kJ/m^2 for impact strength.Moreover,the formulations with higher fiber content exhibited satisfactory values of storage modulus and thermal degradation,while their good interfacial adhesion was evidenced by SEM images. 展开更多
关键词 Sugar palm fibers silane treatment thermoplastic polyurethane sugar palm fiber-reinforced composites mechanical properties thermo-mechanical properties
下载PDF
The Effect of Fibre Length on Flexural and Dynamic Mechanical Properties of Pineapple Leaf Fibre Composites
6
作者 A.A.Mazlan M.T.H.Sultan +3 位作者 S.N.A.Safri N.Saba A.U.M.Shah m.jawaid 《Journal of Renewable Materials》 SCIE EI 2020年第7期833-843,共11页
The present paper deals with the effect of loading different pineapple leaf fibre(PALF)length(short,mixed and long fibres)and their reinforcement for the fabrication of vinyl ester(VE)composites.Performance of PALF/VE... The present paper deals with the effect of loading different pineapple leaf fibre(PALF)length(short,mixed and long fibres)and their reinforcement for the fabrication of vinyl ester(VE)composites.Performance of PALF/VE composites was investigated through three-point bending flexural testing and viscoelastic(dynamic)mechanical properties through dynamic mechanical analysis(DMA).DMA results revealed that the long PALF/VE composites displayed better mechanical,damping factor and dynamic properties as compared to the short and mixed PALF/VE composites.The flexural strength and modulus of long PALF/VE composites were 113.5 MPa and 14.3 GPa,respectively.The storage(E′)and loss(E″)moduli increased to 2000 MPa and 225 MPa respectively for PALF/VE composites.Overall result analysis indicated that increasing the length of the reinforcement fibre results in satisfactory mechanical performance and dynamic properties of composites. 展开更多
关键词 Pineapple leaf fibre vinyl ester resin flexural strength dynamical mechanical properties damping factor
下载PDF
Performance Evaluation of Calcium Alkali-treated Oil Palm/Pineapple Fibre/Bio-phenolic Composites
7
作者 Sameer A.Awad Hassan Fouad +4 位作者 Eman M.Khalaf N.Saba Hom N.Dhakal m.jawaid Othman Y.Alothman 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1493-1503,共11页
The utilisation of oil palm fibre(OPF)and pineapple leaf fibres(PALF)as reinforcement materials for bio-phenolic composites is growing especially in automotive lightweight applications.The major aim of this current st... The utilisation of oil palm fibre(OPF)and pineapple leaf fibres(PALF)as reinforcement materials for bio-phenolic composites is growing especially in automotive lightweight applications.The major aim of this current study is to investigate the influence of alkali(Ca(OH)_(2)) treatment on pure and hybrid composites.The effects of enhancements in chemical interactions were evaluated by the Fourier-Transform Infrared Spectrometer(FTIR).Dynamic Mechanical Analysis(DMA)and Thermogravimetric Analysis(TGA)performance of untreated reinforcements(OPF and PALF)and treated(OPF/OPF)composites at varying temperature and noted sufficient interfacial bonding contributing towards the improvements in thermal stability.From DMA results,the storage modulus improved with treated composites while the damping factor was reduced.Furthermore,the treated hybrid composites exhibited significant improvements in thermal stability compared to untreated fibre composites.The results indicated that alkali calcium hydroxide(Ca(OH2(:T)incorporation in hybrid composites(OPF/PALF)results in increased tensile strength and modulus among all composites.Similarly,the alkali-treated(Ca(OH)_(2))-treated pure composite(T/50%PALF),and hybrid composites(T/1OPF.1PALF)exhibited better flexural strength as compared with other composites.In contrast,the T/50%PALF showed higher flexural stress of 78.2 MPa,while the flexural modulus was recorded at 6503 MPa.It can be proposed from the findings of this study that the alkali treatment(5%Ca(OH)_(2))can be utilised to improve the strength and efficiency of agriculture biomass to be used as reinforcements in composites.Additionally,the hybridisation of bio-fibre composites has the potential as a novel variety of biodegradable and sustainable composites appropriate for several industrial and engineering applications. 展开更多
关键词 Hybrid fibre composites Alkali treatments Surface modifications Mechanical properties Thermal stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部