In this article, the solutions to a nonhomogeneous Burgers equation subject to bounded and compactly supported initial profiles are constructed. In an interesting study, Kloosterziel (Journal of Engineering Mathemati...In this article, the solutions to a nonhomogeneous Burgers equation subject to bounded and compactly supported initial profiles are constructed. In an interesting study, Kloosterziel (Journal of Engineering Mathematics 24, 213-236 (1990)) represented a solution to an initial value problem (IVP) for the heat equation, with an initial data in a class of rapidly decaying functions, as a series of self-similar solutions to the heat equation. This approach quickly revealed the large time behaviour for the solution to the IVP. Inspired by Kloosterziel's approach, the solution to the nonhomogeneous Burgers equation is expressed in terms of the self-similar solutions to the heat equation. The large time behaviour of the solutions to the nonhomogeneous Burgers equation is obtained.展开更多
基金supported by the Council of Scientific and Industrial Research(No.09/84(366)/2005-EMR-I)
文摘In this article, the solutions to a nonhomogeneous Burgers equation subject to bounded and compactly supported initial profiles are constructed. In an interesting study, Kloosterziel (Journal of Engineering Mathematics 24, 213-236 (1990)) represented a solution to an initial value problem (IVP) for the heat equation, with an initial data in a class of rapidly decaying functions, as a series of self-similar solutions to the heat equation. This approach quickly revealed the large time behaviour for the solution to the IVP. Inspired by Kloosterziel's approach, the solution to the nonhomogeneous Burgers equation is expressed in terms of the self-similar solutions to the heat equation. The large time behaviour of the solutions to the nonhomogeneous Burgers equation is obtained.