Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The...Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The potential structure inside the torch and its dependence on the plasma current and gas flow rate are also investigated. The arc voltage is seen to exhibit negative characteristic for a current below 150 A and positive characteristic above that current value. The voltage drop near the electrodes is found to decrease with the increase in plasma current. 25~ of the total voltage is dropped near the cathode at a plasma current of 50 A and a argon plasma gas flow rate of 10 liter per minute (LPM), and it decreases to 12% with the current increasing to 300 A, and to 17% with a gas flow rate of 25 LPM. The variation in the torch efficiency with the gas flow rate and plasma current is also reported. The efficiency of the torch is found to be between 36% and 48%. In addition, the plasma gas temperature at various positions of the reactor and for different currents and voltages are measured by calorimetric estimation with a heat balance technique.展开更多
文摘Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The potential structure inside the torch and its dependence on the plasma current and gas flow rate are also investigated. The arc voltage is seen to exhibit negative characteristic for a current below 150 A and positive characteristic above that current value. The voltage drop near the electrodes is found to decrease with the increase in plasma current. 25~ of the total voltage is dropped near the cathode at a plasma current of 50 A and a argon plasma gas flow rate of 10 liter per minute (LPM), and it decreases to 12% with the current increasing to 300 A, and to 17% with a gas flow rate of 25 LPM. The variation in the torch efficiency with the gas flow rate and plasma current is also reported. The efficiency of the torch is found to be between 36% and 48%. In addition, the plasma gas temperature at various positions of the reactor and for different currents and voltages are measured by calorimetric estimation with a heat balance technique.