The effect of the addition of small amounts of rare earths (Ln=La, Ce, Nd and Gd) to alumina supported copper-cobalt spinel oxide on the catalysts efficiency in CO and CH4 oxidation and in NO decomposition was inves...The effect of the addition of small amounts of rare earths (Ln=La, Ce, Nd and Gd) to alumina supported copper-cobalt spinel oxide on the catalysts efficiency in CO and CH4 oxidation and in NO decomposition was investigated. Samples of Ln/CuCo/AI catalyst were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), scanning electron mieroscopy-energy dispersive spectroscopy (SEM-EDS), H2-temperature-programmed reduc- tion (H2-TPR), electron paramagnetic resonanee (EPR) spectroscopy and low temperature nitrogen adsorption, The results showed that the addition of rare earths changed the surface state of the alumina supported copper-cobalt spinel catalyst. As a result, partial re- duction of copper species was observed as well as migration of these species between the surface and the bulk. The Ln/CuCo/A1 catalysts behaved differently in oxidation and reduction processes. In oxidation processes where oxide structure was important, Ce/CuCo/A1 and Nd/CuCo/A1 were the most active catalysts. The catalyst Ce/CuCo/AI was the most active in the oxidation reactions because of the availability and favorable surface distribution of the redox couples Cu+/Cu2+ and Ce3+/Ce4+. In NO decompostion, Ln-modified catalysts significantly improved the selectivity of the process to N2.展开更多
基金Project supported by the European Social Fund(ESF)(BG051PO001-3.3.06-0050)
文摘The effect of the addition of small amounts of rare earths (Ln=La, Ce, Nd and Gd) to alumina supported copper-cobalt spinel oxide on the catalysts efficiency in CO and CH4 oxidation and in NO decomposition was investigated. Samples of Ln/CuCo/AI catalyst were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), scanning electron mieroscopy-energy dispersive spectroscopy (SEM-EDS), H2-temperature-programmed reduc- tion (H2-TPR), electron paramagnetic resonanee (EPR) spectroscopy and low temperature nitrogen adsorption, The results showed that the addition of rare earths changed the surface state of the alumina supported copper-cobalt spinel catalyst. As a result, partial re- duction of copper species was observed as well as migration of these species between the surface and the bulk. The Ln/CuCo/A1 catalysts behaved differently in oxidation and reduction processes. In oxidation processes where oxide structure was important, Ce/CuCo/A1 and Nd/CuCo/A1 were the most active catalysts. The catalyst Ce/CuCo/AI was the most active in the oxidation reactions because of the availability and favorable surface distribution of the redox couples Cu+/Cu2+ and Ce3+/Ce4+. In NO decompostion, Ln-modified catalysts significantly improved the selectivity of the process to N2.