A finite-difference algorithm is proposed for numerical modeling of hydrodynamic flows with rarefaction shocks, in which the fluid undergoes a jump-like liquid-gas phase transition. This new type of flow discontinuity...A finite-difference algorithm is proposed for numerical modeling of hydrodynamic flows with rarefaction shocks, in which the fluid undergoes a jump-like liquid-gas phase transition. This new type of flow discontinuity, unexplored so far in computational fluid dynamics, arises in the approximation of phase-flip(PF) hydrodynamics, where a highly dynamic fluid is allowed to reach the innermost limit of metastability at the spinodal, upon which an instantaneous relaxation to the full phase equilibrium(EQ) is assumed. A new element in the proposed method is artificial kinetics of the phase transition, represented by an artificial relaxation term in the energy equation for a "hidden"component of the internal energy, temporarily withdrawn from the fluid at the moment of the PF transition. When combined with an appropriate variant of artificial viscosity in the Lagrangian framework, the latter ensures convergence to exact discontinuous solutions, which is demonstrated with several test cases.展开更多
Dynamics and spectral transmission of Al plasma produced by extreme ultraviolet(EUV)irradiation of 0.75-mm thick Al foil is investigated.The EUV radiation with the peak power density in the range of 0.19-0.54 TW/cm 2 ...Dynamics and spectral transmission of Al plasma produced by extreme ultraviolet(EUV)irradiation of 0.75-mm thick Al foil is investigated.The EUV radiation with the peak power density in the range of 0.19-0.54 TW/cm 2 is provided by Z-pinch formed by W multiwire array implosion in the Angara-5-1 facility.Geometry of the experiment ensures that there are no plasma fluxes from the pinch toward the Al foil and plasma.The same EUV source is used as a back illuminator for obtaining the absorption spectrum of Al plasma in the wavelength range of 5e24 nm.It comprises absorption lines of ions Al^(4+),Al^(5+),Al^(6+),Al^(7+).Analysis of relative intensities of the lines shows that those ions are formed in dense Al plasma with a temperature of~20 eV.Dynamics of Al plasma has been investigated with transverse laser probing.We have also performed radiation-gas-dynamics simulations of plasma dynamics affected by external radiation,which includes self-consistent radiation transport in a plasma shell.The simulations show good agreement with an experimental absorption spectrum and with experimental data concerning plasma dynamics,as well as with the analysis of line absorption spectrum.This confirms the correctness of the physical model underlying these simulations.展开更多
文摘A finite-difference algorithm is proposed for numerical modeling of hydrodynamic flows with rarefaction shocks, in which the fluid undergoes a jump-like liquid-gas phase transition. This new type of flow discontinuity, unexplored so far in computational fluid dynamics, arises in the approximation of phase-flip(PF) hydrodynamics, where a highly dynamic fluid is allowed to reach the innermost limit of metastability at the spinodal, upon which an instantaneous relaxation to the full phase equilibrium(EQ) is assumed. A new element in the proposed method is artificial kinetics of the phase transition, represented by an artificial relaxation term in the energy equation for a "hidden"component of the internal energy, temporarily withdrawn from the fluid at the moment of the PF transition. When combined with an appropriate variant of artificial viscosity in the Lagrangian framework, the latter ensures convergence to exact discontinuous solutions, which is demonstrated with several test cases.
基金The work was partially supported by RSF under Grant No.16-12-10487by the RFBR project 15-02-04411 and 15-01-06195.
文摘Dynamics and spectral transmission of Al plasma produced by extreme ultraviolet(EUV)irradiation of 0.75-mm thick Al foil is investigated.The EUV radiation with the peak power density in the range of 0.19-0.54 TW/cm 2 is provided by Z-pinch formed by W multiwire array implosion in the Angara-5-1 facility.Geometry of the experiment ensures that there are no plasma fluxes from the pinch toward the Al foil and plasma.The same EUV source is used as a back illuminator for obtaining the absorption spectrum of Al plasma in the wavelength range of 5e24 nm.It comprises absorption lines of ions Al^(4+),Al^(5+),Al^(6+),Al^(7+).Analysis of relative intensities of the lines shows that those ions are formed in dense Al plasma with a temperature of~20 eV.Dynamics of Al plasma has been investigated with transverse laser probing.We have also performed radiation-gas-dynamics simulations of plasma dynamics affected by external radiation,which includes self-consistent radiation transport in a plasma shell.The simulations show good agreement with an experimental absorption spectrum and with experimental data concerning plasma dynamics,as well as with the analysis of line absorption spectrum.This confirms the correctness of the physical model underlying these simulations.