Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders. To this purpose an extensi...Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders. To this purpose an extensive R^zD regarding molybdenum coatings on copper is in progress. In this contribution we describe chemical composition, deposition quality and resistivity properties of different molybdenum coatings obtained via sputtering. The deposited films are thick metallic disorder layers with different resistivity values above and below the molibdenum dioxide reference value. Chemical and electrical properties of these sputtered coatings have been characterized by Rutherford backscattering, XANES and photoemission spectroscopy. We will also consider multiple cells standing wave section coated by a molybdenum layer designed to improve the performance of X-Band accelerating systems.展开更多
The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions.Nevertheless,the presence of st...The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions.Nevertheless,the presence of strong electromagnetic pulses(EMPs)generated during the interactions can severely hinder its employment.For this reason,the diagnostic system must be designed to have high EMP shielding.Here we present a new advanced prototype of detector,developed at ENEA-Centro Ricerche Frascati(Italy),with a large-area(15 mm×15 mm)polycrystalline diamond sensor having 150 μm thickness.The tailored detector design and testing ensure high sensitivity and,thanks to the fast temporal response,high-energy resolution of the reconstructed ion spectrum.The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility(E_(L)~100 J,τ_(L)=750 fs,I_(L)(1-2.5)×10^(19)W/cm^(2))at GSI(Germany).The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained.展开更多
文摘Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders. To this purpose an extensive R^zD regarding molybdenum coatings on copper is in progress. In this contribution we describe chemical composition, deposition quality and resistivity properties of different molybdenum coatings obtained via sputtering. The deposited films are thick metallic disorder layers with different resistivity values above and below the molibdenum dioxide reference value. Chemical and electrical properties of these sputtered coatings have been characterized by Rutherford backscattering, XANES and photoemission spectroscopy. We will also consider multiple cells standing wave section coated by a molybdenum layer designed to improve the performance of X-Band accelerating systems.
基金funding from the Euratom research and training program 2014-2018 and 2019-2020 under grant agreement No.633053funding from LASERLAB-EUROPE(grant agreement No.654148,European Union’s Horizon 2020 research and innovation program)supported by the Ministry of Science and Higher Education of the Russian Federation(Agreement with Joint Institute for High Temperatures RAS No.075-15-2020-785,dated 23 September 2020).
文摘The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions.Nevertheless,the presence of strong electromagnetic pulses(EMPs)generated during the interactions can severely hinder its employment.For this reason,the diagnostic system must be designed to have high EMP shielding.Here we present a new advanced prototype of detector,developed at ENEA-Centro Ricerche Frascati(Italy),with a large-area(15 mm×15 mm)polycrystalline diamond sensor having 150 μm thickness.The tailored detector design and testing ensure high sensitivity and,thanks to the fast temporal response,high-energy resolution of the reconstructed ion spectrum.The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility(E_(L)~100 J,τ_(L)=750 fs,I_(L)(1-2.5)×10^(19)W/cm^(2))at GSI(Germany).The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained.