期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical assessment on improving multistage centrifugal impeller performance by changing inlet skew angle at impeller inlet 被引量:2
1
作者 m.n.labib Woo Ju-sik +4 位作者 Choi Du-youl T.Utomo B.Fajar Chung Han-shik Jeong Hyo-min 《Journal of Central South University》 SCIE EI CAS 2012年第4期953-961,共9页
Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the ... Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the impeller inlet.Four variations of lean angles,that is,8°,10°,15° and 20°,were made at first stage impeller.Reynolds Average Navier Stokes equation was used in simulation together with a shear?stress transport(SST) k-w turbulence model and mixing-plane approach,respectively.Three dimensional fluid flows were simplified using periodic model to reduce the computational cost and time required.A good performance was expected that the secondary flow can be effectively reduced in the flow passage of the impeller without excessive increase in manufacturing cost caused by the secondary flow.The results show that secondary flow affects the main flow intricately to form vortices or having non-uniform velocity in the flow passage,which in turn results in substantial fluid energy loss not only in the impeller but also in the guide vane downstream of impeller.The numerical solutions were performed and allowed the optimum design and operating conditions to be obtained. 展开更多
关键词 computational fluid dynamics secondary flow blade inlet skew angle multistage centrifugal compressor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部