Si3N4 ceramic was jointed to itself using a filler alloy of Cu-Zn-Ti by the reaction between Ti and Si3N4. The microstructure of the interface in the joint is found to be Si3N4 ceramic/TiN reaction layer/Ti5Si3 reacti...Si3N4 ceramic was jointed to itself using a filler alloy of Cu-Zn-Ti by the reaction between Ti and Si3N4. The microstructure of the interface in the joint is found to be Si3N4 ceramic/TiN reaction layer/Ti5Si3 reaction layer. The grain size of the TiN and Ti5Si3 reaction layer is 0.1μm and 1-2μm, respectively. There is no crystal orientation relationship between TiN reaction layer and Si3N4 ceramic or Ti5Si3 reaction layer. The kinetic equation for calculating the thickness of the reaction layer was obtained. When a (CuZn)85Ti15 alloy is used as the filler alloy, the apparent activation energy of the growth of the reaction layer is 201.69kJ/mol.展开更多
An AFM (Atomic Force Microscope) based nanoindentation method for local measurement of mechanical properties near interfaces in both angular and blunted SiC particle reinforced LD2 composites is presented. The blunted...An AFM (Atomic Force Microscope) based nanoindentation method for local measurement of mechanical properties near interfaces in both angular and blunted SiC particle reinforced LD2 composites is presented. The blunted composite exhibits an improved ductility than the angular counterpart. The nanoindentation examination shows that the micromechanical properties near interfaces distribute unevenly and vary with particle shape in the SiC p/LD2 composites. There are a higher nanohardness value and a lower plastic deformation capacity around an angular particle than around a blunted one. It is inferred that the residual stress and strain concentrations are severer around the angular particle, which causes matrix cracking at a lower external strain level and leads to a lower ductility of the angular composite.展开更多
文摘Si3N4 ceramic was jointed to itself using a filler alloy of Cu-Zn-Ti by the reaction between Ti and Si3N4. The microstructure of the interface in the joint is found to be Si3N4 ceramic/TiN reaction layer/Ti5Si3 reaction layer. The grain size of the TiN and Ti5Si3 reaction layer is 0.1μm and 1-2μm, respectively. There is no crystal orientation relationship between TiN reaction layer and Si3N4 ceramic or Ti5Si3 reaction layer. The kinetic equation for calculating the thickness of the reaction layer was obtained. When a (CuZn)85Ti15 alloy is used as the filler alloy, the apparent activation energy of the growth of the reaction layer is 201.69kJ/mol.
文摘An AFM (Atomic Force Microscope) based nanoindentation method for local measurement of mechanical properties near interfaces in both angular and blunted SiC particle reinforced LD2 composites is presented. The blunted composite exhibits an improved ductility than the angular counterpart. The nanoindentation examination shows that the micromechanical properties near interfaces distribute unevenly and vary with particle shape in the SiC p/LD2 composites. There are a higher nanohardness value and a lower plastic deformation capacity around an angular particle than around a blunted one. It is inferred that the residual stress and strain concentrations are severer around the angular particle, which causes matrix cracking at a lower external strain level and leads to a lower ductility of the angular composite.