This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage mod...This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage modulus was decreased for all composites with increases in temperature and pattern of slopes for all composites,having almost the same values of E′at glass transition temperature(Tg).The peak of the loss modulus of pure phenolic composites was shown to be much less.After the addition of kenaf/PALF,peaks were higher and shifted towards a high temperature.The Tan delta peak height was low for pure phenolic composites and maximum for 60%PALF phenolic composites.Cole-Cole analysis was carried out to understand the phase behavior of the composite samples.Thermogravimetric analysis(TGA)results indicated that pure phenolic composites have better thermal stability than PALF and kenaf phenolic composites.Vertical and horizontal UL-94 tests were conducted and showed pure phenolic resin is highly fire resistant.The overall results showed that treated KF composites enhanced the dynamic mechanical and thermal properties among all PALF/KF composites.展开更多
Hydromagnetic nanoliquid establish an extraordinary category of nanoliquids that unveil both liquid and magnetic attributes.The interest in the utilization of hydromagnetic nanoliquids as a heat transporting medium st...Hydromagnetic nanoliquid establish an extraordinary category of nanoliquids that unveil both liquid and magnetic attributes.The interest in the utilization of hydromagnetic nanoliquids as a heat transporting medium stem from a likelihood of regulating its flow along with heat transportation process subjected to an externally imposed magnetic field.This analysis reports the hydromagnetic nanoliquid impact on differential type(second-grade)liquid from a convectively heated extending surface.The well-known Darcy-Forchheimer aspect capturing porosity characteristics is introduced for nonlinear analysis.Robin conditions elaborating heat-mass transportation effect are considered.In addition,Ohmic dissipation and suction/injection aspects are also a part of this research.Mathematical analysis is done by implementing the basic relations of fluid mechanics.The modeled physical problem is simplified through order analysis.The resulting systems(partial differential expressions)are rendered to the ordinary ones by utilizing the apposite variables.Convergent solutions are constructed employing homotopy algorithm.Pictorial and numeric result are addressed comprehensively to elaborate the nature of sundry parameters against physical quantities.The velocity profile is suppressed with increasing Hartmann number(magnetic parameter)whereas it is enhanced with increment in material parameter(second-grade).With the elevation in thermophoresis parameter,temperature and concentration of nanoparticles are accelerated.展开更多
文摘This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage modulus was decreased for all composites with increases in temperature and pattern of slopes for all composites,having almost the same values of E′at glass transition temperature(Tg).The peak of the loss modulus of pure phenolic composites was shown to be much less.After the addition of kenaf/PALF,peaks were higher and shifted towards a high temperature.The Tan delta peak height was low for pure phenolic composites and maximum for 60%PALF phenolic composites.Cole-Cole analysis was carried out to understand the phase behavior of the composite samples.Thermogravimetric analysis(TGA)results indicated that pure phenolic composites have better thermal stability than PALF and kenaf phenolic composites.Vertical and horizontal UL-94 tests were conducted and showed pure phenolic resin is highly fire resistant.The overall results showed that treated KF composites enhanced the dynamic mechanical and thermal properties among all PALF/KF composites.
基金Institutional Fund Projects under grant no.(IFPIP:1429-135-1443)。
文摘Hydromagnetic nanoliquid establish an extraordinary category of nanoliquids that unveil both liquid and magnetic attributes.The interest in the utilization of hydromagnetic nanoliquids as a heat transporting medium stem from a likelihood of regulating its flow along with heat transportation process subjected to an externally imposed magnetic field.This analysis reports the hydromagnetic nanoliquid impact on differential type(second-grade)liquid from a convectively heated extending surface.The well-known Darcy-Forchheimer aspect capturing porosity characteristics is introduced for nonlinear analysis.Robin conditions elaborating heat-mass transportation effect are considered.In addition,Ohmic dissipation and suction/injection aspects are also a part of this research.Mathematical analysis is done by implementing the basic relations of fluid mechanics.The modeled physical problem is simplified through order analysis.The resulting systems(partial differential expressions)are rendered to the ordinary ones by utilizing the apposite variables.Convergent solutions are constructed employing homotopy algorithm.Pictorial and numeric result are addressed comprehensively to elaborate the nature of sundry parameters against physical quantities.The velocity profile is suppressed with increasing Hartmann number(magnetic parameter)whereas it is enhanced with increment in material parameter(second-grade).With the elevation in thermophoresis parameter,temperature and concentration of nanoparticles are accelerated.