The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around V 850 million worth of structural funds in 2011–2012 by the ...The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around V 850 million worth of structural funds in 2011–2012 by the European Commission for the installation of Extreme Light Infrastructure(ELI).The ELI project consists of three pillars being built in the Czech Republic,Hungary,and Romania.This challenging proposal is based on recent technical progress allowing ultraintense laser fields in which intensities will soon be reaching as high as I0∼1023Wcm−2.This tremendous technological advance has been brought about by the invention of chirped pulse amplification by Mourou and Strickland.Romania is hosting the ELI for Nuclear Physics(ELI-NP)pillar in M˘agurele near Bucharest.The new facility,currently under construction,is intended to serve the broad national,European,and international scientific community.Its mission covers scientific research at the frontier of knowledge involving two domains.The first is laser-driven experiments related to NP,strong-field quantum electrodynamics,and associated vacuum effects.The second research domain is based on the establishment of a Compton-backscattering-based,high-brilliance,and intenseγbeam with Eγ≲19.5 MeV,which represents a merger between laser and accelerator technology.This system will allow the investigation of the nuclear structure of selected isotopes and nuclear reactions of relevance,for example,to astrophysics with hitherto unprecedented resolution and accuracy.In addition to fundamental themes,a large number of applications with significant societal impact will be developed.The implementation of the project started in January 2013 and is spearheaded by the ELI-NP/Horia Hulubei National Institute for Physics and Nuclear Engineering(IFIN-HH).Experiments will begin in early 2020.展开更多
A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to ...A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities.展开更多
基金The contribution of the entire ELI-NP team and collaborators to the project implementation is gratefully acknowledged,especially the help of A.Imreh in creating the complex 3D figures.The work has been supported by Extreme Light Infrastructure Nuclear Physics Phase II,a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund and the Competitiveness Operational Programme(No.1/07.07.2016,COP,ID 1334).
文摘The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around V 850 million worth of structural funds in 2011–2012 by the European Commission for the installation of Extreme Light Infrastructure(ELI).The ELI project consists of three pillars being built in the Czech Republic,Hungary,and Romania.This challenging proposal is based on recent technical progress allowing ultraintense laser fields in which intensities will soon be reaching as high as I0∼1023Wcm−2.This tremendous technological advance has been brought about by the invention of chirped pulse amplification by Mourou and Strickland.Romania is hosting the ELI for Nuclear Physics(ELI-NP)pillar in M˘agurele near Bucharest.The new facility,currently under construction,is intended to serve the broad national,European,and international scientific community.Its mission covers scientific research at the frontier of knowledge involving two domains.The first is laser-driven experiments related to NP,strong-field quantum electrodynamics,and associated vacuum effects.The second research domain is based on the establishment of a Compton-backscattering-based,high-brilliance,and intenseγbeam with Eγ≲19.5 MeV,which represents a merger between laser and accelerator technology.This system will allow the investigation of the nuclear structure of selected isotopes and nuclear reactions of relevance,for example,to astrophysics with hitherto unprecedented resolution and accuracy.In addition to fundamental themes,a large number of applications with significant societal impact will be developed.The implementation of the project started in January 2013 and is spearheaded by the ELI-NP/Horia Hulubei National Institute for Physics and Nuclear Engineering(IFIN-HH).Experiments will begin in early 2020.
基金support from the European Cluster of Advanced Laser Light Sources(EUCALL)project which has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 654220support of the ELI-NP team and from ELI-NP PhaseⅡ,a project co-financed by the Romanian Government and European Union through the European Regional Development Fund–the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)+5 种基金support of the ELI-Beamlines project,mainly sponsored by the project ELI–Extreme Light Infrastructure–Phase 2(CZ.02.1.01/0.0/0.0/15–008/0000162)through the European Regional Development Fundsupport of Planet Dive,a project that has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(grant agreement N.637748)supported by the Helmholtz Association under VHNG-1141support of the European Research Council Consolidator Grant ENSURE(ERC-2014CoG No.647554)Support by the Nanofabrication Facilities Rossendorfthe Institute of Ion Beam Physics and Materials Research,HZDR
文摘A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities.