期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Current status and highlights of the ELI-NP research program 被引量:2
1
作者 K.A.Tanaka K.M.Spohr +25 位作者 D.L.Balabanski S.Balascuta L.Capponi m.o.cernaianu M.Cuciuc A.Cucoanes I.Dancus A.Dhal B.Diaconescu D.Doria P.Ghenuche D.G.Ghita S.Kisyov V.Nastasa J.F.Ong F.Rotaru D.Sangwan P.-A.Soderstrom D.Stutman G.Suliman O.Tesileanu L.Tudor N.Tsoneva C.A.Ur D.Ursescu N.V.Zamfir 《Matter and Radiation at Extremes》 SCIE CAS 2020年第2期2-25,共24页
The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around V 850 million worth of structural funds in 2011–2012 by the ... The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around V 850 million worth of structural funds in 2011–2012 by the European Commission for the installation of Extreme Light Infrastructure(ELI).The ELI project consists of three pillars being built in the Czech Republic,Hungary,and Romania.This challenging proposal is based on recent technical progress allowing ultraintense laser fields in which intensities will soon be reaching as high as I0∼1023Wcm−2.This tremendous technological advance has been brought about by the invention of chirped pulse amplification by Mourou and Strickland.Romania is hosting the ELI for Nuclear Physics(ELI-NP)pillar in M˘agurele near Bucharest.The new facility,currently under construction,is intended to serve the broad national,European,and international scientific community.Its mission covers scientific research at the frontier of knowledge involving two domains.The first is laser-driven experiments related to NP,strong-field quantum electrodynamics,and associated vacuum effects.The second research domain is based on the establishment of a Compton-backscattering-based,high-brilliance,and intenseγbeam with Eγ≲19.5 MeV,which represents a merger between laser and accelerator technology.This system will allow the investigation of the nuclear structure of selected isotopes and nuclear reactions of relevance,for example,to astrophysics with hitherto unprecedented resolution and accuracy.In addition to fundamental themes,a large number of applications with significant societal impact will be developed.The implementation of the project started in January 2013 and is spearheaded by the ELI-NP/Horia Hulubei National Institute for Physics and Nuclear Engineering(IFIN-HH).Experiments will begin in early 2020. 展开更多
关键词 INTENSE FRONTIER APPROVAL
下载PDF
Targets for high repetition rate laser facilities:needs,challenges and perspectives 被引量:1
2
作者 I.Prencipe J.Fuchs +44 位作者 S.Pascarelli D.W.Schumacher R.B.Stephens N.B.Alexander R.Briggs M.Büscher m.o.cernaianu A.Choukourov M.De Marco A.Erbe J.Fassbender G.Fiquet P.Fitzsimmons C.Gheorghiu J.Hund L.G.Huang M.Harmand N.J.Hartley A.Irman T.Kluge Z.Konopkova S.Kraft D.Kraus V.Leca D.Margarone J.Metzkes K.Nagai W.Nazarov P.Lutoslawski D.Papp M.Passoni A.Pelka J.P.Perin J.Schulz M.Smid C.Spindloe S.Steinke R.Torchio C.Vass T.Wiste R.Zaffino K.Zeil T.Tschentscher U.Schramm T.E.Cowan 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2017年第3期10-40,共31页
A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to ... A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities. 展开更多
关键词 high-energy density physics target design and fabrication
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部