In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-p...In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.展开更多
基金Shahrekord University for financial supportpartially supported by the Center of Excellence for Mathematics, University of Shahrekord, Shahrekord, Iran
文摘In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.