In this study,the structural and electronic properties of armchair graphdiyne nanoribbons,which have different widths are studied using the first principle calculation.The results indicate that all studied AGDYNRs sho...In this study,the structural and electronic properties of armchair graphdiyne nanoribbons,which have different widths are studied using the first principle calculation.The results indicate that all studied AGDYNRs show semiconducting behavior in which the band gap values decrease with the increase of nanoribbons width.The electronic and electrical properties of the graphdiyne sandwiched between two graphene nanoribbons are also investigated.The findings of our study indicate that among 4 investigated n-G-GDY-G-NR structures,the highest current is calculated for n = 3(3-G-GDY-G-NR),due to phase transition.展开更多
In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(...In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(γ-graphyne) nanoribbons. The results show that all the studied nanoribbons are semiconductor and their band gaps decrease as the widths of nanoribbons increase, which will result in increasing current at a certain voltage. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.展开更多
文摘In this study,the structural and electronic properties of armchair graphdiyne nanoribbons,which have different widths are studied using the first principle calculation.The results indicate that all studied AGDYNRs show semiconducting behavior in which the band gap values decrease with the increase of nanoribbons width.The electronic and electrical properties of the graphdiyne sandwiched between two graphene nanoribbons are also investigated.The findings of our study indicate that among 4 investigated n-G-GDY-G-NR structures,the highest current is calculated for n = 3(3-G-GDY-G-NR),due to phase transition.
文摘In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(γ-graphyne) nanoribbons. The results show that all the studied nanoribbons are semiconductor and their band gaps decrease as the widths of nanoribbons increase, which will result in increasing current at a certain voltage. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.