Semi-solid processing of A380 aluminum alloy was performed by gas induced semi-solid(GISS)process.The effects of argon inert gas flow rate,starting temperature and duration of gas purging as key GISS parameters and al...Semi-solid processing of A380 aluminum alloy was performed by gas induced semi-solid(GISS)process.The effects of argon inert gas flow rate,starting temperature and duration of gas purging as key GISS parameters and also modification with Sr on the structural refinements,hardness and impact strength of GISS alloys were investigated.Microstructural evolution shows that there is an important effect of the pouring temperature and Sr addition on the morphology and size of primaryα(A1)in the alloy to change from coarse dendritic to fine globular structure.The best sample which has fine grains of 51.18μm in average size and a high level of globularity of 0.89 is achieved from a GISS processing of Sr modified alloy in which the gas purging started at 610℃.The impact strength of the GISS optimized samples((4.67±0.18)J/cm^(2))shows an increase of about 40%with respect to the as-cast sample due to the globular structure and fibrous Si morphology.Moreover,the hardness of the optimized GISS sample((89.34±2.85)HB)increases to(93.84±3.14)HB by modification with the Sr and GISS process.The fracture surface of Sr modified alloy is also dominated by complex topography showing typical ductile fracture features.展开更多
The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid st...The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.展开更多
Amorphous gels were processed with a varying Fe/Ba ratio of 11/5, 28/2, 10.5/1 in water and Solvent. Iron and barium nitrites with specific molar ratio was solved in water and slovent at 60°C for 3 hours until! a...Amorphous gels were processed with a varying Fe/Ba ratio of 11/5, 28/2, 10.5/1 in water and Solvent. Iron and barium nitrites with specific molar ratio was solved in water and slovent at 60°C for 3 hours until! a dark brown solution was prepared . The sols were introduced to substrate dropwise and spinning with 2000 rpm in 3 min was applied ; the work was repeated for 10 times and the samples were dried and sintered . The TGA analysis was used to identify the heating rate of the samples; at temperature of 1150°c for one hour the final phase was attained . the thickness , uniformity , morphology and the composition were examined by SEM and XRD. The study shows that the fabrication barium ferrite film of the molar ratio of Fe/Ba = 10.5/1 is much more suitable than other ratios .展开更多
In the present study,the effects of microstructure,grain size,and texture after thermomechanical processing on the corrosion behavior of AISI 321 austenitic stainless steel(ASS)were studied.The as-received,coarse-grai...In the present study,the effects of microstructure,grain size,and texture after thermomechanical processing on the corrosion behavior of AISI 321 austenitic stainless steel(ASS)were studied.The as-received,coarse-grained steel((35±3)μm)was subjected to 20%,50%and 90%thickness reduction through cold rolling at liquid nitrogen temperature,followed by annealing at 750,950 and 1050℃for 15 min.Recrystallization occurred after annealing at 750℃,and with the increasing of annealing temperature to 950℃and 1050℃,secondary recrystallization(abnormal grain growth)and grain growth were observed.The results showed that,after 20%thickness reduction,corrosion resistance increased significantly(21.1 kΩ·cm^(2))compared with the as-received condition(3.9 kΩ·cm^(2))due to the enhancement ofγ-fiber and the creation ofΣ3 boundaries.In contrast,the corrosion resistance decreased with the increasing of thickness reduction to 90%during rolling,but still depicted higher corrosion resistance compared with the as-received specimen.After annealing the 90%cold rolled(CR)specimens at 750 and 950℃,the corrosion resistance increased in comparison with the as-received sample as a result of the more uniform microstructure,appearance of Goss and brass texture components,and grain refinement.However,significant grain growth((112±76)μm)followed by a non-uniform structure was observed after annealing at 1050℃and resulted in the lowest corrosion resistance(1.3 kΩ·cm^(2)).展开更多
We introduce a new surface energy coefficient in proximity formalism,which is dependent on temperature,and apply it to a systematic study of barrier height and position.This proximity model can effectively predict the...We introduce a new surface energy coefficient in proximity formalism,which is dependent on temperature,and apply it to a systematic study of barrier height and position.This proximity model can effectively predict the barrier heights and positions,as well as the fusion cross sections,over a wide range of incident energies,especially in light-heavy nuclei interaction.展开更多
Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us t...Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of ω1, ω2 and ω3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.展开更多
文摘Semi-solid processing of A380 aluminum alloy was performed by gas induced semi-solid(GISS)process.The effects of argon inert gas flow rate,starting temperature and duration of gas purging as key GISS parameters and also modification with Sr on the structural refinements,hardness and impact strength of GISS alloys were investigated.Microstructural evolution shows that there is an important effect of the pouring temperature and Sr addition on the morphology and size of primaryα(A1)in the alloy to change from coarse dendritic to fine globular structure.The best sample which has fine grains of 51.18μm in average size and a high level of globularity of 0.89 is achieved from a GISS processing of Sr modified alloy in which the gas purging started at 610℃.The impact strength of the GISS optimized samples((4.67±0.18)J/cm^(2))shows an increase of about 40%with respect to the as-cast sample due to the globular structure and fibrous Si morphology.Moreover,the hardness of the optimized GISS sample((89.34±2.85)HB)increases to(93.84±3.14)HB by modification with the Sr and GISS process.The fracture surface of Sr modified alloy is also dominated by complex topography showing typical ductile fracture features.
基金This work was supported by the Metal Foam Group of Amirkabir University(MFGAU)through Grant No.110-mir-13990531.The authors are grateful to Nowin Rahyaft Advanced Sciences and Technologies Knowledge Based Company for their support in casting and cutting the metal foams.
文摘The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.
文摘Amorphous gels were processed with a varying Fe/Ba ratio of 11/5, 28/2, 10.5/1 in water and Solvent. Iron and barium nitrites with specific molar ratio was solved in water and slovent at 60°C for 3 hours until! a dark brown solution was prepared . The sols were introduced to substrate dropwise and spinning with 2000 rpm in 3 min was applied ; the work was repeated for 10 times and the samples were dried and sintered . The TGA analysis was used to identify the heating rate of the samples; at temperature of 1150°c for one hour the final phase was attained . the thickness , uniformity , morphology and the composition were examined by SEM and XRD. The study shows that the fabrication barium ferrite film of the molar ratio of Fe/Ba = 10.5/1 is much more suitable than other ratios .
基金Project(scu.EM1400.30796)supported by the Shahid Chamran University of Ahvaz,Iran。
文摘In the present study,the effects of microstructure,grain size,and texture after thermomechanical processing on the corrosion behavior of AISI 321 austenitic stainless steel(ASS)were studied.The as-received,coarse-grained steel((35±3)μm)was subjected to 20%,50%and 90%thickness reduction through cold rolling at liquid nitrogen temperature,followed by annealing at 750,950 and 1050℃for 15 min.Recrystallization occurred after annealing at 750℃,and with the increasing of annealing temperature to 950℃and 1050℃,secondary recrystallization(abnormal grain growth)and grain growth were observed.The results showed that,after 20%thickness reduction,corrosion resistance increased significantly(21.1 kΩ·cm^(2))compared with the as-received condition(3.9 kΩ·cm^(2))due to the enhancement ofγ-fiber and the creation ofΣ3 boundaries.In contrast,the corrosion resistance decreased with the increasing of thickness reduction to 90%during rolling,but still depicted higher corrosion resistance compared with the as-received specimen.After annealing the 90%cold rolled(CR)specimens at 750 and 950℃,the corrosion resistance increased in comparison with the as-received sample as a result of the more uniform microstructure,appearance of Goss and brass texture components,and grain refinement.However,significant grain growth((112±76)μm)followed by a non-uniform structure was observed after annealing at 1050℃and resulted in the lowest corrosion resistance(1.3 kΩ·cm^(2)).
文摘We introduce a new surface energy coefficient in proximity formalism,which is dependent on temperature,and apply it to a systematic study of barrier height and position.This proximity model can effectively predict the barrier heights and positions,as well as the fusion cross sections,over a wide range of incident energies,especially in light-heavy nuclei interaction.
文摘Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of ω1, ω2 and ω3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.