The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate m...The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model.Based on the general nonlocal theory(GNT),Kelvin-Voigt model,and Timoshenko beam theory,the motion equations for the nanobeam are obtained.Through the GNT,material hardening and softening behaviors are simultaneously taken into account during wave propagation.An analytical solution is utilized to generate the results for torsional(TO),longitudinal(LA),and transverse(TA)types of wave dispersion.Moreover,the effects of nonlocal parameters,Kelvin-Voigt damping,foundation damping,Winkler-Pasternak coefficients,rotating speed,and thermal gradient are illustrated and discussed in detail.展开更多
A collocation method based on an extended cubic B-spline function is introduced for the numerical solution of the modified regularized long wave equation. The accuracy of the method is illustrated by studying the sing...A collocation method based on an extended cubic B-spline function is introduced for the numerical solution of the modified regularized long wave equation. The accuracy of the method is illustrated by studying the single solitary wave propagation and the interaction of two solitary waves of the modified regularized long wave equation.展开更多
文摘The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model.Based on the general nonlocal theory(GNT),Kelvin-Voigt model,and Timoshenko beam theory,the motion equations for the nanobeam are obtained.Through the GNT,material hardening and softening behaviors are simultaneously taken into account during wave propagation.An analytical solution is utilized to generate the results for torsional(TO),longitudinal(LA),and transverse(TA)types of wave dispersion.Moreover,the effects of nonlocal parameters,Kelvin-Voigt damping,foundation damping,Winkler-Pasternak coefficients,rotating speed,and thermal gradient are illustrated and discussed in detail.
文摘A collocation method based on an extended cubic B-spline function is introduced for the numerical solution of the modified regularized long wave equation. The accuracy of the method is illustrated by studying the single solitary wave propagation and the interaction of two solitary waves of the modified regularized long wave equation.