期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers
1
作者 m.valavan S.Rita 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期231-245,共15页
Fraud detection for credit/debit card,loan defaulters and similar types is achievable with the assistance of Machine Learning(ML)algorithms as they are well capable of learning from previous fraud trends or historical... Fraud detection for credit/debit card,loan defaulters and similar types is achievable with the assistance of Machine Learning(ML)algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions.Fraudulent cases are scant in the comparison of non-fraudulent observations,almost in all the datasets.In such cases detecting fraudulent transaction are quite difficult.The most effective way to prevent loan default is to identify non-performing loans as soon as possible.Machine learning algorithms are coming into sight as adept at handling such data with enough computing influence.In this paper,the rendering of different machine learning algorithms such as Decision Tree,Random Forest,linear regression,and Gradient Boosting method are compared for detection and prediction of fraud cases using loan fraudulent manifestations.Further model accuracy metric have been performed with confusion matrix and calculation of accuracy,precision,recall and F-1 score along with Receiver Operating Characteristic(ROC)curves. 展开更多
关键词 Random forest decision tree logistic regression machine Learning gradient boosting method confusion matrix
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部