期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Role of extrusion rate on the microstructure and tensile properties evolution of ultrahigh-strength low-alloy Mg-1.0Al-1.0Ca-0.4Mn(wt.%)alloy 被引量:4
1
作者 X.Q.Liu X.G.Qiao +3 位作者 R.S.Pei Y.Q.Chi L.Yuan m.y.zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期553-561,共9页
Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical proper... Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical properties of the AXM1104 alloy was systematically studied. With the increasing of extrusion rate, the mean dynamically recrystallized(DRXed) grain size of the low alloy and average particles diameter of precipitate second phases were increased, while the degree of grain boundary segregation and the intensity of the basal fiber texture were decreased. With the rising of extrusion rate from 1.0 to 7.0 mm/s, the tensile yield strength(TYS) of the as-extruded AXM1104 alloy was decreased from 445 MPa to 249 MPa, while the elongation to failure(EL) was increased from 5.0% to 17.6%. The TYS, ultimate tensile strength(UTS) and EL of the AXM1104 alloy extruded at the ram speed of 1.5 mm/s was 412 MPa, 419 MPa and 12.0%, respectively,exhibiting comprehensive tensile mechanical properties with ultra-high strength and excellent plasticity. The ultra-high TYS of 412 MPa was mainly due to the strengthening from ultra-fine DRXed grains with segregation of solute atoms at grain boundaries. The strain hardening rate is increase slightly with increasing extrusion speed, which may be ascribed to the increasing mean DRXed grain size with rising extrusion speed. The higher strain hardening rate contributes to the higher EL of these AXM1104 samples extruded at higher ram speed. 展开更多
关键词 Mg-Al-Ca-Mn alloy Ultrafine grain Extrusion rate Grain boundary segregation MICROSTRUCTURE Ultrahigh strength
下载PDF
Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing 被引量:8
2
作者 L.B.Tong J.H.Chu +5 位作者 W.T.Sun Z.H.Jiang D.N.Zou S.F.Liu S.Kamado m.y.zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1007-1018,共12页
In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the... In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the mechanical properties are remarkably improved,with room-temperature yield strength of 269.6 MPa and elongation of 22.7%.The twinning deformation results in a discontinuous recrystallization behavior in the initial stage of ECAP.With further deformation,the continuously dynamic recrystallization contributes to an obvious grain refinement effect.The activation of non-basal slip system leads to the formation of a unique basal texture,which is related to the elevated ECAP temperature and the decreased grain size.Both grain refinement and texture modification derived from ECAP process result in the increase of yield strength,while the cracked secondary phase particles are beneficial to the enhanced ductility,through reducing the stress concentration and hindering premature failure. 展开更多
关键词 Mg alloy ECAP Microstructural evolution High strength Superior ductility
下载PDF
Reducing the tension-compression yield asymmetry of extruded Mg-Zn-Ca alloy via equal channel angular pressing 被引量:8
3
作者 L.B.Tong m.y.zheng +4 位作者 S.Kamado D.P.Zhang J.Meng L.R.Cheng H.J.Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第4期302-308,共7页
The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large ... The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry. 展开更多
关键词 Mg-Zn-Ca alloy Yield asymmetry Equal channel angular pressing TWINNING PRECIPITATES
下载PDF
Microstructure and room temperature tensile properties of 1μm-SiCp/AZ31B magnesium matrix composite
4
作者 M.J.Shen X.J.Wang +3 位作者 M.F.Zhang B.H.Zhang m.y.zheng K.Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期155-161,共7页
In the present study,AZ31B magnesium matrix composites reinforced with two volume fractions(3 and 5 vol.%)of micron-SiC particles(1μm)were fabricated by semisolid stirring assisted ultrasonic vibration method.The as-... In the present study,AZ31B magnesium matrix composites reinforced with two volume fractions(3 and 5 vol.%)of micron-SiC particles(1μm)were fabricated by semisolid stirring assisted ultrasonic vibration method.The as-cast ingots were extruded at 350℃ with the extrusion ratio of 15:1 at a constant ram speed of 15 mm/s.The microstructure of the composites was investigated by optical microscopy,scanning electron microscope and transmission electron microscope.Microstructure characterization of the composites showed relative uniform reinforcement distribution and significant grain refinement.The presence of 1μm-SiC particles assisted in improving the elastic modulus and tensile strength.The ultimate tensile strength and yield strength of the 5 vol.%SiCp/AZ31B composites were simultaneously improved. 展开更多
关键词 Magnesium matrix composite MICROSTRUCTURE Mechanical properties
下载PDF
Processing, Microstructure and Mechanical Properties of Ti6Al4V Particles-Reinforced Mg Matrix Composites 被引量:6
5
作者 X.M.Wang X.J.Wang +2 位作者 X.S.Hu K.Wu m.y.zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期940-950,共11页
Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of... Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of the ingots. Furthermore, the optimal speed of the heating and the liquid stirring could overcome particle settlement caused by the density difference between the matrix and the particles. Ti6Al4V particles distributed uniformly in the composites with different particle contents. The average grain size decreased with the increase in the particle contents. The Ti6A14V particles bonded pretty well with the alloy matrix. In addition, there were some interfacial reactions in the composites. There were rod-like A13Ti phases at the interface. The precipitates extended from the particle surface to the matrix, and they might improve the interfacial bonding strength. The ultimate tensile strength, yield strength and elastic modulus were enhanced as the particle contents increased, and the elongation was much better than that of the same matrix material reinforced with SiC particles. Thus, the novel composites exhibit better comprehensive mechanical properties. 展开更多
关键词 Magnesium matrix composites Ti6Al4V particles Stir casting Microstructure Mechanicalproperties
原文传递
Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella 被引量:6
6
作者 S.Z.Wu T.Nakata +8 位作者 G.Z.Tang C.Xu X.J.Wang X.W.Li X.G.Qiao m.y.zheng L.Geng S.Kamado G.H.Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第14期66-75,共10页
The homogenized Mg-8.2 Gd-3.8 Y-1.0 Zn-0.4 Zr(wt.%)alloy full of plate-shaped long period stacking ordered(LPSO)phases was hot extruded in the atmosphere and cooled by the forced-air,then the effect of forced-air cool... The homogenized Mg-8.2 Gd-3.8 Y-1.0 Zn-0.4 Zr(wt.%)alloy full of plate-shaped long period stacking ordered(LPSO)phases was hot extruded in the atmosphere and cooled by the forced-air,then the effect of forced-air cooling on the microstructure and age-hardening response of the alloy was investigated in this work.The results show that in comparison with the extruded sample cooling in the atmosphere,the forced-air cooling restricts dynamic recrystallization(DRX)and brings about finer dynamic recrystallized(DRXed)grain size,stronger basal texture and higher dislocation density.Furthermore,the forced-air cooling promotes the dynamic precipitation in the DRXed regions and facilitates formation of plate-shaped LPSO phases andγ’phases with smaller interspacing in the unrecrystallized(un DRXed)regions,then slightly restricts the precipitation ofβphases during aging.After peak-ageing treatment,the extruded sample with forced-air cooling shows superior tensile properties with a tensile yield strength of 439 MPa,an ultimate tensile strength of 493 MPa,and elongation to failure of 18.6%. 展开更多
关键词 Mg-RE alloy LPSO phase Dynamic recrystallization Precipitation Mechanical properties
原文传递
Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases 被引量:5
7
作者 S.Z.Wu X.G.Qiao m.y.zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期117-124,共8页
Mg-Y-Ni alloys with different second phases were designed by changing Y/Ni atomic ratio from 1.5 to 0.5.The microstructure and mechanical properties of as-cast and as-extruded alloys were investigated.The as-cast Mg-Y... Mg-Y-Ni alloys with different second phases were designed by changing Y/Ni atomic ratio from 1.5 to 0.5.The microstructure and mechanical properties of as-cast and as-extruded alloys were investigated.The as-cast Mg-Y-Ni alloy with Y/Ni ratio of 1.5 is composed ofα-Mg and long period stacking ordered(LPSO)phase.When Y/Ni ratio is equal to 1,nanoscale lamellarγ’phase and eutectic Mg2Ni phase are formed in addition to LPSO phase.As Y/Ni ratio decreases further,the amount of eutectic Mg2Ni phase increases,while the amount of LPSO phase decreases.After extrusion,the LPSO andγ’phases are distributed along the extrusion direction,while eutectic Mg2Ni phase is broken and dispersed in the as-extruded alloys.LPSO phase and Mg2Ni phase in the alloys promote dynamic recrystallization(DRX)during extrusion,whileγ’phase inhibits DRX.Consequently,the Mg96Y2Ni2(at.%)alloy with LPSO phase andγ’phase as the main second phases shows the strongest basal texture after extrusion.The tensile yield strength of the as-extruded Mg-Y-Ni alloys increases first and then decreases with decreasing Y/Ni ratio.The as-extruded Mg96Y2Ni2(at.%)alloy with Y/Ni=1 exhibits excellent mechanical properties with tensile yield strength of 465 MPa,ultimate tensile strength of 510 MPa and elongation to failure of 7.2%,which is attributed to the synergistic effect of bulk LPSO phase and nanoscaleγ’phase. 展开更多
关键词 Mg-Y-Ni alloys LPSO γ’Phase MG2NI Mechanical properties
原文传递
Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging 被引量:2
8
作者 L.B.Tong J.H.Chu +4 位作者 D.N.Zou Q.Sun S.Kamado H.G.Brokmeier m.y.zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第2期265-277,共13页
In this study,the mechanical properties and damping capacities of cast Mg-5.5 Zn-0.6 Zr(weight percent,ZK60)alloys have been simultaneously improved by a facile multi-directional forging(MDF)processing,and the mechani... In this study,the mechanical properties and damping capacities of cast Mg-5.5 Zn-0.6 Zr(weight percent,ZK60)alloys have been simultaneously improved by a facile multi-directional forging(MDF)processing,and the mechanisms of microstructure evolution and texture modification are systematically investigated.The activation of tension twinning occurs during the initial MDF stage,due to the coarse-grained structure of the as-cast alloy.With increasing MDF passes,the continuous dynamic recrystallization(CDRX)results in a fine equiaxed-grain structure.The typical non-basal texture is formed in the as-MDFed alloy for 6 passes,with the(0001)planes inclined 60°–70°to forged direction and 10°–20°to transverse direction,respectively.A good balance between the strength(~194.9 MPa)and ductility(~24.9%)has been achieved,which can be ascribed to the grain refinement,non-basal texture and fine precipitate particles.The damping capacity is remarkably improved after MDF processing,because the severe deformation increases the dislocation density,which effectively enlarges the sweep areas of mobile dislocations. 展开更多
关键词 Mg alloy Multi-directional forging Microstructure Texture evolution Mechanical properties DAMPING capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部