In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-p...In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.展开更多
In this paper, we present a neighborhood following primal-dual interior-point algorithm for solving symmetric cone convex quadratic programming problems, where the objective function is a convex quadratic function and...In this paper, we present a neighborhood following primal-dual interior-point algorithm for solving symmetric cone convex quadratic programming problems, where the objective function is a convex quadratic function and the feasible set is the intersection of an affine subspace and a symmetric cone attached to a Euclidean Jordan algebra. The algorithm is based on the [13] broad class of commutative search directions for cone of semidefinite matrices, extended by [18] to arbitrary symmetric cones. Despite the fact that the neighborhood is wider, which allows the iterates move towards optimality with longer steps, the complexity iteration bound remains as the same result of Schmieta and Alizadeh for symmetric cone optimization problems.展开更多
基金Shahrekord University for financial supportpartially supported by the Center of Excellence for Mathematics, University of Shahrekord, Shahrekord, Iran
文摘In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.
基金Shahrekord University for financial supportpartially supported by the Center of Excellence for Mathematics, University of Shahrekord, Shahrekord, Iran
文摘In this paper, we present a neighborhood following primal-dual interior-point algorithm for solving symmetric cone convex quadratic programming problems, where the objective function is a convex quadratic function and the feasible set is the intersection of an affine subspace and a symmetric cone attached to a Euclidean Jordan algebra. The algorithm is based on the [13] broad class of commutative search directions for cone of semidefinite matrices, extended by [18] to arbitrary symmetric cones. Despite the fact that the neighborhood is wider, which allows the iterates move towards optimality with longer steps, the complexity iteration bound remains as the same result of Schmieta and Alizadeh for symmetric cone optimization problems.