Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K...Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K over Fq is introduced. It is the graph with m-dimensional totally isotropic subspaces of the 2v-dimensional symplectic space Fq(2v) as its vertices and two vertices P and Q are adjacent if and only if the rank of PKQw is 1 and the dimension of P ∩ Q is m - 1. It is proved that the full automorphism group of the graph GSp2v(q, m) is the projective semilinear symplectic group P∑p(2v, q).展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.10990011,11271004 and 61071221)the Doctoral Program of Higher Education of China(Grant No.20100001110007)the Natural Science Foundation of Hebei Province(Grant No.A2009000253)
文摘Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K over Fq is introduced. It is the graph with m-dimensional totally isotropic subspaces of the 2v-dimensional symplectic space Fq(2v) as its vertices and two vertices P and Q are adjacent if and only if the rank of PKQw is 1 and the dimension of P ∩ Q is m - 1. It is proved that the full automorphism group of the graph GSp2v(q, m) is the projective semilinear symplectic group P∑p(2v, q).