This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 ...This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.展开更多
To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with su...To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material. The photosynthetic electron transport rate (ETR), effective quantum yield (EQY), photochemical quenching coefficient (qp), and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading, full heading, 10 d after full heading and 20 d after full heading stages. Results showed that the values of ETR, EQY and qp increased with rice development from initial heading to 20 d after full heading, whereas the NPQ decreased. During the measured stages, ETR, EQY and qp increased initially and then decreased as nitrogen application amount increased, but they peaked at different nitrogen fertilizer levels. The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N. In conclusion, the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.展开更多
To understand the relationship between lodging resistance and chemical component contents in culms and leaf sheaths of rice, the physical strength and maximum bearing capacity of culm, and the contents and amounts of ...To understand the relationship between lodging resistance and chemical component contents in culms and leaf sheaths of rice, the physical strength and maximum bearing capacity of culm, and the contents and amounts of potassium (K) silicon (Si) and soluble sugars in culms and leaf sheaths were investigated using four japonica rice varieties with different lodging resistance characteristics during grain filling. There were significant differences in the total amounts of K, Si and soluble sugars in culms and leaf sheaths among the tested rice varieties. The difference in the total amount of Si was greater than that of K or soluble sugars. The physical strength and maximum bearing capacity of culm continuously decreased from heading to ripening, with a rapid decrease at the dough stage. However, the contents and total amounts of K and Si in culms and the Si content in leaf sheaths gradually increased and an accumulation of K and Si in culms was exhibited, whereas the content and total amount of K and the total amount of Si in leaf sheaths gradually decreased and an exportation of K and Si in leaf sheaths was presented. The physical strength was positively and significantly correlated with the total amounts of K and Si in culms during grain filling except that at the heading stage, the total amount of soluble sugars in culms at the heading and milky stages, the total amounts of Si and soluble sugars in leaf sheaths at the heading stage, the total amount of K in leaf sheaths at the heading and milky stages, and the maximum bearing capacity during grain filling. It is suggested that the lodging resistance of japonica rice would be improved by increasing the amount of soluble sugars in plants at the early filling stage, and enhancing the amount of Si in plants during grain filling through topdressing Si fertilizer at the early filling stage.展开更多
基金supported by the National Natural Science Foundation of China(31271659)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD04B10 2011BAD16B01, 2013BAD07B14)
文摘This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.
基金financially supported by the National Key Technology Support Program(Grant No.2006BAD02A13)the Dedicated Fund 511th for Agricultural Development of Hunan,China(Grant No.2006NK1001)
文摘To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material. The photosynthetic electron transport rate (ETR), effective quantum yield (EQY), photochemical quenching coefficient (qp), and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading, full heading, 10 d after full heading and 20 d after full heading stages. Results showed that the values of ETR, EQY and qp increased with rice development from initial heading to 20 d after full heading, whereas the NPQ decreased. During the measured stages, ETR, EQY and qp increased initially and then decreased as nitrogen application amount increased, but they peaked at different nitrogen fertilizer levels. The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N. In conclusion, the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.
基金supported by the National Science and Technology Support Program of China(Grant No.2007BAQ00066-4)
文摘To understand the relationship between lodging resistance and chemical component contents in culms and leaf sheaths of rice, the physical strength and maximum bearing capacity of culm, and the contents and amounts of potassium (K) silicon (Si) and soluble sugars in culms and leaf sheaths were investigated using four japonica rice varieties with different lodging resistance characteristics during grain filling. There were significant differences in the total amounts of K, Si and soluble sugars in culms and leaf sheaths among the tested rice varieties. The difference in the total amount of Si was greater than that of K or soluble sugars. The physical strength and maximum bearing capacity of culm continuously decreased from heading to ripening, with a rapid decrease at the dough stage. However, the contents and total amounts of K and Si in culms and the Si content in leaf sheaths gradually increased and an accumulation of K and Si in culms was exhibited, whereas the content and total amount of K and the total amount of Si in leaf sheaths gradually decreased and an exportation of K and Si in leaf sheaths was presented. The physical strength was positively and significantly correlated with the total amounts of K and Si in culms during grain filling except that at the heading stage, the total amount of soluble sugars in culms at the heading and milky stages, the total amounts of Si and soluble sugars in leaf sheaths at the heading stage, the total amount of K in leaf sheaths at the heading and milky stages, and the maximum bearing capacity during grain filling. It is suggested that the lodging resistance of japonica rice would be improved by increasing the amount of soluble sugars in plants at the early filling stage, and enhancing the amount of Si in plants during grain filling through topdressing Si fertilizer at the early filling stage.