The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterize...The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.展开更多
The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield ...The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.展开更多
文摘The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.
文摘The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.