针对储能电池组在电网典型储能工况下荷电状态(state of charge,SOC)估算精度较低的问题,提出一种基于核主成分分析(kernel principal component analysis,KPCA)-鹈鹕优化(pelican optimization algorithm,POA)-双向门控循环单元(bidire...针对储能电池组在电网典型储能工况下荷电状态(state of charge,SOC)估算精度较低的问题,提出一种基于核主成分分析(kernel principal component analysis,KPCA)-鹈鹕优化(pelican optimization algorithm,POA)-双向门控循环单元(bidirectional gated recurrent unit,Bi GRU)的SOC估计模型。通过设计调峰/调频工况下电池组充放电实验,从数据中提取表征SOC变化的融合特征作为模型输入;分别构建不同工况下Bi GRU网络,并利用POA对其超参数进行优化,提高模型性能;进一步在混合工况下验证模型的有效性。结果表明,所建模型有着更好的SOC估计效果和更强的鲁棒性,能够提高复杂储能工况下储能电池组SOC估计精度。展开更多
针对现有绝缘子检测算法无法定向检测绝缘子及其缺陷的问题,提出了一种改进YOLOv5(you only look once v5,YOLOv5)算法的航拍绝缘子识别及其缺陷检测方法。通过定向标注航拍绝缘子图片,形成航拍绝缘子数据集和缺陷绝缘子数据集;在YOLOv...针对现有绝缘子检测算法无法定向检测绝缘子及其缺陷的问题,提出了一种改进YOLOv5(you only look once v5,YOLOv5)算法的航拍绝缘子识别及其缺陷检测方法。通过定向标注航拍绝缘子图片,形成航拍绝缘子数据集和缺陷绝缘子数据集;在YOLOv5的主干特征提取网络引入轻量化注意力机制模块、在特征融合阶段使用改进的空间金字塔池化结构;通过改进YOLOv5网络的头部结构使其可以对绝缘子进行定向识别,并对损失函数添加角度损失分类。实验结果表明在检测时间由单张0.044 s到单张0.049 s并无显著增长的前提下,改进后的算法在测试集上的mAP(mean average precision)的值为95.00%,实现了定向识别绝缘子及其漏帽缺陷,还可应用到绝缘子视频流检测。为后续的绝缘子精确定位以及进一步故障检测打下良好基础。展开更多
文摘针对现有绝缘子检测算法无法定向检测绝缘子及其缺陷的问题,提出了一种改进YOLOv5(you only look once v5,YOLOv5)算法的航拍绝缘子识别及其缺陷检测方法。通过定向标注航拍绝缘子图片,形成航拍绝缘子数据集和缺陷绝缘子数据集;在YOLOv5的主干特征提取网络引入轻量化注意力机制模块、在特征融合阶段使用改进的空间金字塔池化结构;通过改进YOLOv5网络的头部结构使其可以对绝缘子进行定向识别,并对损失函数添加角度损失分类。实验结果表明在检测时间由单张0.044 s到单张0.049 s并无显著增长的前提下,改进后的算法在测试集上的mAP(mean average precision)的值为95.00%,实现了定向识别绝缘子及其漏帽缺陷,还可应用到绝缘子视频流检测。为后续的绝缘子精确定位以及进一步故障检测打下良好基础。