由于传统无迹卡尔曼滤波估算方法具有局限性,为了能准确估算动力电池荷电状态(state of charge,SOC),提出了一种基于无迹卡尔曼粒子滤波的动力电池SOC估算方法.以三元锂电池为研究对象,建立了电池二阶RC等效电路模型,通过对电池进行充...由于传统无迹卡尔曼滤波估算方法具有局限性,为了能准确估算动力电池荷电状态(state of charge,SOC),提出了一种基于无迹卡尔曼粒子滤波的动力电池SOC估算方法.以三元锂电池为研究对象,建立了电池二阶RC等效电路模型,通过对电池进行充放电试验辨识出模型参数,并验证模型准确性.采集了实际工况下的电池数据,分别用无迹卡尔曼滤波算法、粒子滤波算法和无迹卡尔曼粒子滤波算法估算电池SOC,在MATLAB中进行了仿真试验,并对估算的电池SOC进行比较.结果表明:无迹卡尔曼粒子滤波算法可以快速准确地估算出电池SOC,误差小于2.5%,优于另外2种算法.展开更多
文摘由于传统无迹卡尔曼滤波估算方法具有局限性,为了能准确估算动力电池荷电状态(state of charge,SOC),提出了一种基于无迹卡尔曼粒子滤波的动力电池SOC估算方法.以三元锂电池为研究对象,建立了电池二阶RC等效电路模型,通过对电池进行充放电试验辨识出模型参数,并验证模型准确性.采集了实际工况下的电池数据,分别用无迹卡尔曼滤波算法、粒子滤波算法和无迹卡尔曼粒子滤波算法估算电池SOC,在MATLAB中进行了仿真试验,并对估算的电池SOC进行比较.结果表明:无迹卡尔曼粒子滤波算法可以快速准确地估算出电池SOC,误差小于2.5%,优于另外2种算法.