The boron-doped type-Ib gem diamond crystals were synthesized successfully by adding amorphous boron into a system of graphite and Kovar catalyst under high pressure and high temperature (HPHT).The effect of additive ...The boron-doped type-Ib gem diamond crystals were synthesized successfully by adding amorphous boron into a system of graphite and Kovar catalyst under high pressure and high temperature (HPHT).The effect of additive boron on type-Ib gem diamond was extensively studied including the growth characteristic,morphology and nitrogen concentration.The synthesized boron-doped type-Ib gem diamond crystals were characterized by optical microscope (OM),scanning electron microscope (SEM) and infrared spectrometer (IR).The results show that the growth region of the {111} face becomes wide,whereas the growth region of the {100} face becomes narrow and nearly disappears as increasing additive boron in the sample.The crystal will be opaque and imperfect,and the concentration of nitrogen will be decreased when the boron atoms are incorporated into gem diamond lattice.These techniques are very important and will be widely applied.展开更多
High-quality type-Ib tower-shape diamond single crystals were synthesized in cubic anvil high pressure apparatus (SPD-6×1200) at 5.4 GPa and 1250-1450°C. The (100) face of seed crystal was used as the growth...High-quality type-Ib tower-shape diamond single crystals were synthesized in cubic anvil high pressure apparatus (SPD-6×1200) at 5.4 GPa and 1250-1450°C. The (100) face of seed crystal was used as the growth face, and FeNiMnCo alloy was used as the solvent/catalyst. Two kinds of carbon diffusing fields (type-B and type-G) were simulated by finite element method (FEM). Using the two kinds of carbon diffusing fields, many diamond single crystals were synthesized. The effects of carbon diffusing fields on the crystal quality and β value (the ratio of height to diameter of diamond crystal) were studied. The results show that using type-B diffusing field, considerable inclusions appeared in tower-shape diamond crystals with high β values; however, using type- G diffusing field, inclusions were reduced markedly in high β values tower-shape diamond crystals, and the crystal, up to 0.6 carat in weight and 5.3 mm in size, was synthesized. Experimental phenomena were explained well with the help of the FEM.展开更多
Type Ib diamonds were grown by the temperature gradient method (TGM) at 5.5 GPa and 1500-1560 K in a china-type cubic anvil high pressure apparatus using Ni70Mn25Co5 alloy as solvent/catalyst. The concentration of nit...Type Ib diamonds were grown by the temperature gradient method (TGM) at 5.5 GPa and 1500-1560 K in a china-type cubic anvil high pressure apparatus using Ni70Mn25Co5 alloy as solvent/catalyst. The concentration of nitrogen (CN) in type Ib diamonds synthesized at different synthesis temperatures was measured by a Fourier transform infrared (FTIR) spectrometer. The dependence of CN in diamond on synthesis temperature was studied. For the type Ib diamonds synthesized using Ni70Mn25Co5 as catalyst, its CN decreases along with the increase of synthesis temperature.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50572032)
文摘The boron-doped type-Ib gem diamond crystals were synthesized successfully by adding amorphous boron into a system of graphite and Kovar catalyst under high pressure and high temperature (HPHT).The effect of additive boron on type-Ib gem diamond was extensively studied including the growth characteristic,morphology and nitrogen concentration.The synthesized boron-doped type-Ib gem diamond crystals were characterized by optical microscope (OM),scanning electron microscope (SEM) and infrared spectrometer (IR).The results show that the growth region of the {111} face becomes wide,whereas the growth region of the {100} face becomes narrow and nearly disappears as increasing additive boron in the sample.The crystal will be opaque and imperfect,and the concentration of nitrogen will be decreased when the boron atoms are incorporated into gem diamond lattice.These techniques are very important and will be widely applied.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50572032 and 50731006)
文摘High-quality type-Ib tower-shape diamond single crystals were synthesized in cubic anvil high pressure apparatus (SPD-6×1200) at 5.4 GPa and 1250-1450°C. The (100) face of seed crystal was used as the growth face, and FeNiMnCo alloy was used as the solvent/catalyst. Two kinds of carbon diffusing fields (type-B and type-G) were simulated by finite element method (FEM). Using the two kinds of carbon diffusing fields, many diamond single crystals were synthesized. The effects of carbon diffusing fields on the crystal quality and β value (the ratio of height to diameter of diamond crystal) were studied. The results show that using type-B diffusing field, considerable inclusions appeared in tower-shape diamond crystals with high β values; however, using type- G diffusing field, inclusions were reduced markedly in high β values tower-shape diamond crystals, and the crystal, up to 0.6 carat in weight and 5.3 mm in size, was synthesized. Experimental phenomena were explained well with the help of the FEM.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50572032, 50731006)
文摘Type Ib diamonds were grown by the temperature gradient method (TGM) at 5.5 GPa and 1500-1560 K in a china-type cubic anvil high pressure apparatus using Ni70Mn25Co5 alloy as solvent/catalyst. The concentration of nitrogen (CN) in type Ib diamonds synthesized at different synthesis temperatures was measured by a Fourier transform infrared (FTIR) spectrometer. The dependence of CN in diamond on synthesis temperature was studied. For the type Ib diamonds synthesized using Ni70Mn25Co5 as catalyst, its CN decreases along with the increase of synthesis temperature.