期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Congruence formulae modulo powers of 2 for class numbers of cyclic quartic fields
1
作者 ma lianrong LI Wei ZHANG XianKe 《Science China Mathematics》 SCIE 2009年第3期417-426,共10页
Let K = $ k(\sqrt \theta ) $ be a real cyclic quartic field, k be its quadratic subfield and $ \tilde K = k(\sqrt { - \theta } ) $ be the corresponding imaginary quartic field. Denote the class numbers of K, k and $ \... Let K = $ k(\sqrt \theta ) $ be a real cyclic quartic field, k be its quadratic subfield and $ \tilde K = k(\sqrt { - \theta } ) $ be the corresponding imaginary quartic field. Denote the class numbers of K, k and $ \tilde K $ by h K , h k and {417-3} respectively. Here congruences modulo powers of 2 for h ? = h K /h K and $ \tilde h^ - = h_{\tilde K} /h_k $ are obtained via studying the p-adic L-functions of the fields. 展开更多
关键词 class number REGULATOR unit group CHARACTER p-adic L-function conductor 11M9 11R29
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部