Improving the mixing way of fillers and polymer before molding was demonstrated to be a promising approach in the past. In this study, we investigated the effects of the mixing method and the dispersed solvent on the ...Improving the mixing way of fillers and polymer before molding was demonstrated to be a promising approach in the past. In this study, we investigated the effects of the mixing method and the dispersed solvent on the mechanical and friction performance of halloysite nanotubes (HNTs)-filled polytetrafluoroethylene (PTFE) (HNTs/PTFE). After evenly mixing in solution, the HNTs/PTFE mixtures were formed into disc-like nanocomposites by the cold compression molding method. The mechanical performance showed that the tensile strength of the HNTs/PTFE nanocomposites prepared by employing the solution mixing method was about 3—5 MPa more and the Young’s modulus was increased by about 1.2 times greater than those prepared by employing the drying mixing method, but unfortunately they had a poorer elongation at break. Alternatively, it was noteworthy that the wear resistance of the nanocomposites prepared by employing the solution mixing method was improved by 5—10 times and 11—20 times as compared to those formed via the drying mixing method and pure PTFE, respectively. The results showed that the PTFE nanocomposites filled with HNTs by using the solution mixing method exhibited an excellent antiwear performance and had a desirable processability.展开更多
基金supported by the Talent Introduction Fund of Yangzhou University (2012)the Key Research Project-Industry Foresight and General Key Technology of Yangzhou (YZ2015020)+4 种基金the Innovative Talent Program of Green Yang Golden Phoenix (yzlyjfjh2015CX073)the Yangzhou Social Development Project (YZ2016072)the Jiangsu Province Six Talent Peaks Project (2014-XCL-013)the Jiangsu Industrial-Academic-Research Prospective Joint Project ( BY2016069-02)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Improving the mixing way of fillers and polymer before molding was demonstrated to be a promising approach in the past. In this study, we investigated the effects of the mixing method and the dispersed solvent on the mechanical and friction performance of halloysite nanotubes (HNTs)-filled polytetrafluoroethylene (PTFE) (HNTs/PTFE). After evenly mixing in solution, the HNTs/PTFE mixtures were formed into disc-like nanocomposites by the cold compression molding method. The mechanical performance showed that the tensile strength of the HNTs/PTFE nanocomposites prepared by employing the solution mixing method was about 3—5 MPa more and the Young’s modulus was increased by about 1.2 times greater than those prepared by employing the drying mixing method, but unfortunately they had a poorer elongation at break. Alternatively, it was noteworthy that the wear resistance of the nanocomposites prepared by employing the solution mixing method was improved by 5—10 times and 11—20 times as compared to those formed via the drying mixing method and pure PTFE, respectively. The results showed that the PTFE nanocomposites filled with HNTs by using the solution mixing method exhibited an excellent antiwear performance and had a desirable processability.